scispace - formally typeset
Search or ask a question
Author

Jianqi Zhang

Bio: Jianqi Zhang is an academic researcher from Center for Excellence in Education. The author has contributed to research in topics: Organic solar cell & Polymer solar cell. The author has an hindex of 49, co-authored 220 publications receiving 11921 citations. Previous affiliations of Jianqi Zhang include Technische Universität München & Chinese Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reported ultrathin metal-organic frameworks (MOFs) as promising electrocatalysts for the oxygen evolution reaction (OER) in alkaline conditions.
Abstract: The design and synthesis of efficient electrocatalysts are important for electrochemical conversion technologies. The oxygen evolution reaction (OER) is a key process in such conversions, having applications in water splitting and metal–air batteries. Here, we report ultrathin metal–organic frameworks (MOFs) as promising electrocatalysts for the OER in alkaline conditions. Our as-prepared ultrathin NiCo bimetal–organic framework nanosheets on glassy-carbon electrodes require an overpotential of 250 mV to achieve a current density of 10 mA cm−2. When the MOF nanosheets are loaded on copper foam, this decreases to 189 mV. We propose that the surface atoms in the ultrathin MOF sheets are coordinatively unsaturated—that is, they have open sites for adsorption—as evidenced by a suite of measurements, including X-ray spectroscopy and density-functional theory calculations. The findings suggest that the coordinatively unsaturated metal atoms are the dominating active centres and the coupling effect between Ni and Co metals is crucial for tuning the electrocatalytic activity. Efficient electrocatalysts for the oxygen–evolution reaction are desired due to their importance in applications such as water splitting and metal–air batteries. Here, the authors engineer ultrathin metal–organic frameworks that require low overpotential to generate oxygen from alkaline media.

1,853 citations

Journal ArticleDOI
TL;DR: This study demonstrates that finely tuning the OPV materials to reduce the bandgap-voltage offset has great potential for boosting the efficiency and unexpectedly obtain higher open-circuit voltages and achieve a record high PCE of 16.5% by chlorination.
Abstract: Broadening the optical absorption of organic photovoltaic (OPV) materials by enhancing the intramolecular push-pull effect is a general and effective method to improve the power conversion efficiencies of OPV cells. However, in terms of the electron acceptors, the most common molecular design strategy of halogenation usually results in down-shifted molecular energy levels, thereby leading to decreased open-circuit voltages in the devices. Herein, we report a chlorinated non-fullerene acceptor, which exhibits an extended optical absorption and meanwhile displays a higher voltage than its fluorinated counterpart in the devices. This unexpected phenomenon can be ascribed to the reduced non-radiative energy loss (0.206 eV). Due to the simultaneously improved short-circuit current density and open-circuit voltage, a high efficiency of 16.5% is achieved. This study demonstrates that finely tuning the OPV materials to reduce the bandgap-voltage offset has great potential for boosting the efficiency. Halogenation has proved an effective strategy to improve the power conversion efficiencies of organic solar cells but it usually leads to lower open-circuit voltages. Here, Cui et al. unexpectedly obtain higher open-circuit voltages and achieve a record high PCE of 16.5% by chlorination.

1,360 citations

Journal ArticleDOI
TL;DR: The results demonstrate that minimizing the alkyl chains to get suitable solubility and enhanced intermolecular packing has a great potential in further improving its photovoltaic performance.
Abstract: Optimizing the molecular structures of organic photovoltaic (OPV) materials is one of the most effective methods to boost power conversion efficiencies (PCEs). For an excellent molecular system with a certain conjugated skeleton, fine tuning the alky chains is of considerable significance to fully explore its photovoltaic potential. In this work, the optimization of alkyl chains is performed on a chlorinated nonfullerene acceptor (NFA) named BTP-4Cl-BO (a Y6 derivative) and very impressive photovoltaic parameters in OPV cells are obtained. To get more ordered intermolecular packing, the n-undecyl is shortened at the edge of BTP-eC11 to n-nonyl and n-heptyl. As a result, the NFAs of BTP-eC9 and BTP-eC7 are synthesized. The BTP-eC7 shows relatively poor solubility and thus limits its application in device fabrication. Fortunately, the BTP-eC9 possesses good solubility and, at the same time, enhanced electron transport property than BTP-eC11. Significantly, due to the simultaneously enhanced short-circuit current density and fill factor, the BTP-eC9-based single-junction OPV cells record a maximum PCE of 17.8% and get a certified value of 17.3%. These results demonstrate that minimizing the alkyl chains to get suitable solubility and enhanced intermolecular packing has a great potential in further improving its photovoltaic performance.

1,218 citations

Journal ArticleDOI
TL;DR: In this paper, an active layer comprising a new widebandgap polymer donor named PBQx-TF and a new low-bandgap non-fullerene acceptor (NFA) named eC9-2Cl is rationally designed.
Abstract: Improving power conversion efficiency (PCE) is important for broadening the applications of organic photovoltaic (OPV) cells. Here, a maximum PCE of 19.0% (certified value of 18.7%) is achieved in single-junction OPV cells by combining material design with a ternary blending strategy. An active layer comprising a new wide-bandgap polymer donor named PBQx-TF and a new low-bandgap non-fullerene acceptor (NFA) named eC9-2Cl is rationally designed. With optimized light utilization, the resulting binary cell exhibits a good PCE of 17.7%. An NFA F-BTA3 is then added to the active layer as a third component to simultaneously improve the photovoltaic parameters. The improved light unitization, cascaded energy level alignment, and enhanced intermolecular packing result in open-circuit voltage of 0.879 V, short-circuit current density of 26.7 mA cm-2 , and fill factor of 0.809. This study demonstrates that further improvement of PCEs of high-performance OPV cells requires fine tuning of the electronic structures and morphologies of the active layers.

784 citations

Journal ArticleDOI
TL;DR: High-efficiency all-polymer solar cells with less thickness-dependent behavior are demonstrated by using a low bandgap n-type conjugated polymer N2200 as acceptor and an absorption-complementary difluorobenzotriazole-based medium-bandgap polymer J51 as donor.
Abstract: High-efficiency all-polymer solar cells with less thickness-dependent behavior are demonstrated by using a low bandgap n-type conjugated polymer N2200 as acceptor and an absorption-complementary difluorobenzotriazole-based medium-bandgap polymer J51 as donor.

640 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: The PBDB-T-SF:IT-4F-based OSC device showed a record high efficiency, and an efficiency of over 12% can be obtained with a thickness of 100-200 nm, suggesting the promise of fullerene-free OSCs in practical applications.
Abstract: A new polymer donor (PBDB-T-SF) and a new small molecule acceptor (IT-4F) for fullerene-free organic solar cells (OSCs) were designed and synthesized The influences of fluorination on the absorption spectra, molecular energy levels, and charge mobilities of the donor and acceptor were systematically studied The PBDB-T-SF:IT-4F-based OSC device showed a record high efficiency of 131%, and an efficiency of over 12% can be obtained with a thickness of 100–200 nm, suggesting the promise of fullerene-free OSCs in practical applications

2,292 citations

Journal ArticleDOI
TL;DR: Non-fullerene OSCs show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities, and this Review highlights these opportunities made possible by NF acceptors.
Abstract: Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.

2,117 citations