scispace - formally typeset
Search or ask a question
Author

Jianqing Wang

Bio: Jianqing Wang is an academic researcher from Nagoya Institute of Technology. The author has contributed to research in topics: Ultra-wideband & Bit error rate. The author has an hindex of 29, co-authored 238 publications receiving 3096 citations. Previous affiliations of Jianqing Wang include Tohoku University & Korea Maritime and Ocean University.


Papers
More filters
Journal ArticleDOI
TL;DR: Exposure of heads of rats to 1.95‐GHz W‐CDMA signals for IMT‐2000 for a 2‐year period was not demonstrated to accelerate or otherwise affect ENU‐initiated brain tumorigenesis, and no clear changes in tumor types in the brain were evident.
Abstract: The present study was performed to evaluate effects of a 2-year exposure to an electromagnetic near-field (EMF) equivalent to that generated by cellular phones on tumor development in the central nervous system (CNS) of rats. For this purpose, pregnant F344 rats were given a single administration of N-ethylnitrosourea (ENU) on gestational day 18. A total of 500 pups were divided into five groups, each composed of 50 males and 50 females: Group 1, untreated controls; Group 2, ENU alone; Groups 3 to 5, ENU + EMF (sham exposure and two exposure levels). A 1.95-GHz wide-band code division multiple access (W-CDMA) signal, which is a feature of the International Mobile Telecommunication 2000 (IMT-2000) cellular system was employed for exposure of the rat head starting from 5 weeks of age, 90 min a day, 5 days a week, for 104 weeks. Brain average specific absorption rates (SARs) were designed to be .67 and 2.0 W/kg for low and high exposures, respectively. The incidence and numbers of brain tumors in female rats exposed to 1.95-GHz W-CDMA signals showed tendencies to increase but without statistical significance. Overall, no significant increase in incidences or numbers, either in the males or females, was detected in the EMF-exposed groups. In addition, no clear changes in tumor types in the brain were evident. Thus, under the present experimental conditions, exposure of heads of rats to 1.95-GHz W-CDMA signals for IMT-2000 for a 2-year period was not demonstrated to accelerate or otherwise affect ENU-initiated brain tumorigenesis. Bioelectromagnetics 28:562–572, 2007. © 2007 Wiley-Liss, Inc.

31 citations

Journal Article
TL;DR: Investigation of brain tissues of Big Blue mice suggests exposure to 1.5 GHz EMF is not mutagenic to mouse brain cells and does not create any increased hazard with regard to brain tumor development.
Abstract: The possible mutagenic potential of exposure to 1.5 GHz electromagnetic near field (EMF) was investigated using brain tissues of Big Blue mice (BBM). Male BBM were locally exposed to EMF in the head region at 2.0, 0.67, and 0 W/kg specific absorption rate for 90 min/day, 5 days/week, for 4 weeks. No gliosis or degenerative lesions were histopathologically noted in brain tissues, and no obvious differences in Ki-67 labeling and apoptotic indices of glial cells were evident among the groups. There was no significant variation in the frequency of independent mutations of the lacI transgene in the brains. G:C to A:T transitions at CpG sites constituted the most prevalent mutations in all groups and at all time points. Deletion mutations were slightly increased in both the high and low EMF exposure groups as compared with the sham-exposed group, but the differences were not statistically significant. These findings suggest that exposure to 1.5 GHz EMF is not mutagenic to mouse brain cells and does not create any increased hazard with regard to brain tumor development.

31 citations

Journal ArticleDOI
TL;DR: In this paper, the Poggio-Miller-Chang-Harrington-Wu-Tsai formulation of the method of moments was adopted to directly determine the specific absorption rate (SAR) of a rectangular dielectric phantom placed in an RC, and demonstrated its validity via comparing the numerical temperature rise with those obtained from experiments.
Abstract: In order to determine the whole-body exposure level in small animals inside a reverberation chamber (RC), an ideal electromagnetic (EM) environment has often been assumed inside an RC for numerical dosimetry analyses. In an RC where a strong EM coupling between antennas and animals exists, however, such an EM environment is difficult to be realized, so that it remains unknown whether or not the RC could provide a target dosimetry. In this study, we adopt the Poggio-Miller-Chang-Harrington-Wu-Tsai formulation of the method of moments to directly determine the specific absorption rate (SAR) of a rectangular dielectric phantom placed in an RC, and we demonstrated its validity via comparing the numerical temperature rise with those obtained from experiments. We then demonstrated a nonideal EM environment inside an RC using a prolate spheroid as an exposure target. Furthermore, we performed dosimetry evaluation for multiple rat-shaped tissue-equivalent phantoms inside the RC and determined their whole-body average SARs for many orientations and arrangements of the phantoms. Finally, based on our numerical results, we offered a design rule when using an RC as a whole-body exposure system for small animals.

31 citations

Proceedings ArticleDOI
11 Dec 2006
TL;DR: In this paper, the feasibility of an ultra wideband (UWB) system for in-body wireless communications of biomedical applications was investigated, and the bit error rate (BER) of the proposed system under the additive Gaussian noise environment was derived.
Abstract: The objective of this study is to investigate the feasibility of an ultra wideband (UWB) system for in-body wireless communications of biomedical applications. We first designed an implanted elliptic disc dipole antenna with a UWB frequency band in a human body. We then calculated the channel characteristics for UWB signal propagation from the implanted antenna to the out-of-body using a frequency-dependent finite difference time domain (FD2TD) method. Based on the in-body channel characteristics we optimized the UWB pulse shape. We then proposed a UWB system with bi-phase modulation for the in-body wireless communications, and derived the bit-error rate (BER) of the proposed system under the additive Gaussian noise environment. The results show the feasibility of the UWB system for in-body wireless communications of biomedical applications.

30 citations

Proceedings ArticleDOI
02 Aug 1999
TL;DR: In this paper, the authors proposed to attach a ferrite sheet to the portable telephone to reduce the spatial peak specific absorption rate (SAR) in a human head due to a portable telephone.
Abstract: In order to reduce the spatial peak specific absorption rate (SAR) in a human head due to a portable telephone, we have proposed attaching a ferrite sheet to the portable telephone. In this paper, the mechanism of SAR reduction is reviewed and then the effects of the attachment location and size, and the material properties of ferrite sheet on the SAR reduction are investigated by using the finite-difference time-domain (FDTD) method in conjunction with a detailed human head model. Their effects on the antenna radiation efficiency are also given. The results lead to a guide to choosing and designing a ferrite sheet with the maximum SAR reducing effect for portable telephones.

30 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: The goal is development of a cloud and cloud shadow detection algorithm suitable for routine usage with Landsat images and as high as 96.4%.

1,620 citations

01 Jan 2007
TL;DR: In this paper, the authors provide updates to IEEE 802.16's MIB for the MAC, PHY and asso-ciated management procedures in order to accommodate recent extensions to the standard.
Abstract: This document provides updates to IEEE Std 802.16's MIB for the MAC, PHY and asso- ciated management procedures in order to accommodate recent extensions to the standard.

1,481 citations

Journal ArticleDOI
TL;DR: All tissues and organs were reconstructed as three-dimensional unstructured triangulated surface objects, yielding high precision images of individual features of the body, which greatly enhances the meshing flexibility and the accuracy in comparison with the traditional voxel-based representation of anatomical models.
Abstract: The objective of this study was to develop anatomically correct whole body human models of an adult male (34 years old), an adult female (26 years old) and two children (an 11-year-old girl and a six-year-old boy) for the optimized evaluation of electromagnetic exposure. These four models are referred to as the Virtual Family. They are based on high resolution magnetic resonance (MR) images of healthy volunteers. More than 80 different tissue types were distinguished during the segmentation. To improve the accuracy and the effectiveness of the segmentation, a novel semi-automated tool was used to analyze and segment the data. All tissues and organs were reconstructed as three-dimensional (3D) unstructured triangulated surface objects, yielding high precision images of individual features of the body. This greatly enhances the meshing flexibility and the accuracy with respect to thin tissue layers and small organs in comparison with the traditional voxel-based representation of anatomical models. Conformal computational techniques were also applied. The techniques and tools developed in this study can be used to more effectively develop future models and further improve the accuracy of the models for various applications. For research purposes, the four models are provided for free to the scientific community.

1,347 citations