scispace - formally typeset
Search or ask a question
Author

Jianxin Shi

Bio: Jianxin Shi is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Medicine & Cutin. The author has an hindex of 33, co-authored 94 publications receiving 3873 citations. Previous affiliations of Jianxin Shi include Rice University & Weizmann Institute of Science.
Topics: Medicine, Cutin, Biology, Tapetum, Arabidopsis


Papers
More filters
Journal ArticleDOI
25 Apr 2018-Nature
TL;DR: Analyses of genetic variation and population structure based on over 3,000 cultivated rice (Oryza sativa) genomes reveal subpopulations that correlate with geographic location and patterns of introgression consistent with multiple rice domestication events.
Abstract: Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within- and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.

885 citations

Journal ArticleDOI
TL;DR: Current knowledge on the genetic and biochemical mechanisms underlying pollen wall development in eudicot model Arabidopsis thaliana and monocot model rice (Oryza sativa) are reviewed, focusing on the genes involved in the biosynthesis, transport, and assembly of various precursors of pollen wall components.

272 citations

Journal ArticleDOI
TL;DR: The current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses are summarized, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering.
Abstract: As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

214 citations

Journal ArticleDOI
TL;DR: In this paper, a male Sterile2 (MS2) is predicted to encode a fatty acid reductase required for pollen wall development in Arabidopsis (Arabidopsis thaliana).
Abstract: Male Sterile2 (MS2) is predicted to encode a fatty acid reductase required for pollen wall development in Arabidopsis (Arabidopsis thaliana). Transient expression of MS2 in tobacco (Nicotiana benthamiana) leaves resulted in the accumulation of significant levels of C16 and C18 fatty alcohols. Expression of MS2 fused with green fluorescent protein revealed that an amino-terminal transit peptide targets the MS2 to plastids. The plastidial localization of MS2 is biologically important because genetic complementation of MS2 in ms2 homozygous plants was dependent on the presence of its amino-terminal transit peptide or that of the Rubisco small subunit protein amino-terminal transit peptide. In addition, two domains, NAD(P)H-binding domain and sterile domain, conserved in MS2 and its homologs were also shown to be essential for MS2 function in pollen exine development by genetic complementation testing. Direct biochemical analysis revealed that purified recombinant MS2 enzyme is able to convert palmitoyl-Acyl Carrier Protein to the corresponding C16:0 alcohol with NAD(P)H as the preferred electron donor. Using optimized reaction conditions (i.e. at pH 6.0 and 30°C), MS2 exhibits a K(m) for 16:0-Acyl Carrier Protein of 23.3 ± 4.0 μm, a V(max) of 38.3 ± 4.5 nmol mg⁻¹ min⁻¹, and a catalytic efficiency/K(m) of 1,873 M⁻¹ s⁻¹. Based on the high homology of MS2 to other characterized fatty acid reductases, it was surprising that MS2 showed no activity against palmitoyl- or other acyl-coenzyme A; however, this is consistent with its plastidial localization. In summary, genetic and biochemical evidence demonstrate an MS2-mediated conserved plastidial pathway for the production of fatty alcohols that are essential for pollen wall biosynthesis in Arabidopsis.

188 citations

Journal ArticleDOI
TL;DR: The need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes is demonstrated.
Abstract: Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the regulation of flower organs surface formation, cuticle composition, and its developmental significance. Using a synthetic microRNA approach to simultaneously silence the three SHINE (SHN) clade members, we revealed that these transcription factors act redundantly to shape the surface and morphology of Arabidopsis flowers. It appears that SHNs regulate floral organs' epidermal cell elongation and decoration with nanoridges, particularly in petals. Reduced activity of SHN transcription factors results in floral organs' fusion and earlier abscission that is accompanied by a decrease in cutin load and modified cell wall properties. SHN transcription factors possess target genes within four cutin- and suberin-associated protein families including, CYP86A cytochrome P450s, fatty acyl-CoA reductases, GSDL-motif lipases, and BODYGUARD1-like proteins. The results suggest that alongside controlling cuticular lipids metabolism, SHNs act to modify the epidermis cell wall through altering pectin metabolism and structural proteins. We also provide evidence that surface formation in petals and other floral organs during their growth and elongation or in abscission and dehiscence through SHNs is partially mediated by gibberellin and the DELLA signaling cascade. This study therefore demonstrates the need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes. Furthermore, it will promote future investigation into the relation between the regulation of organ surface patterning and the broader control of flower development and biological functions.

188 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

10 Dec 2007
TL;DR: The experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.
Abstract: EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

1,528 citations

01 Jan 2010
TL;DR: It is found that women over 50 are more likely to have a family history of diabetes, especially if they are obese, than women under the age of 50.
Abstract: Hypertension 66 (20.3%) 24 (24.2%) 30 (16.3%) NS Diabetes 20 (6.2%) 7 (7.1%) 10 (5.4%) NS Excess weight 78 (24%) 27 (27.3%) 44 (23.9%) NS Smokers 64 (19.7%) 17 (17.2%) 35 (19.0%) NS Age >50 years 137 (42.2%) 54 (54.5%) 67 (36.4%) <0.02 Kidney disease 7 (2.2%) 1 (1%) 5 (2.7%) NS Family history, DM 102 (31.4%) 28 (28.3%) 66 (35.9%) NS

1,369 citations

Journal ArticleDOI
TL;DR: This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids that represent their major form of carbon and energy storage in Arabidopsis.
Abstract: Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.

1,169 citations

Journal ArticleDOI
TL;DR: It has become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes.
Abstract: The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field.

894 citations