scispace - formally typeset
Search or ask a question
Author

Jianyi Zhou

Other affiliations: Nanjing Institute of Technology
Bio: Jianyi Zhou is an academic researcher from Southeast University. The author has contributed to research in topics: Microstrip antenna & Antenna (radio). The author has an hindex of 20, co-authored 145 publications receiving 2327 citations. Previous affiliations of Jianyi Zhou include Nanjing Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper provides an overview of the existing multibeam antenna technologies which include the passiveMultibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeams phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures.
Abstract: With the demanding system requirements for the fifth-generation (5G) wireless communications and the severe spectrum shortage at conventional cellular frequencies, multibeam antenna systems operating in the millimeter-wave frequency bands have attracted a lot of research interest and have been actively investigated. They represent the key antenna technology for supporting a high data transmission rate, an improved signal-to-interference-plus-noise ratio, an increased spectral and energy efficiency, and versatile beam shaping, thereby holding a great promise in serving as the critical infrastructure for enabling beamforming and massive multiple-input multiple-output (MIMO) that boost the 5G. This paper provides an overview of the existing multibeam antenna technologies which include the passive multibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeam phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures. Specifically, their principles of operation, design, and implementation, as well as a number of illustrative application examples are reviewed. Finally, the suitability of these MBAs for the future 5G massive MIMO wireless systems as well as the associated challenges is discussed.

737 citations

Journal ArticleDOI
Yan Zhang1, Wei Hong1, Chen Yu1, Zhenqi Kuai1, Yu-Dan Don1, Jianyi Zhou1 
TL;DR: In this article, three types of ultrawideband (UWB) antennas with triple notched bands are proposed and investigated for UWB communication applications, which consist of a planar circular patch monopole UWB antenna and multiple etched slots on the patch and/or split ring resonators (SRRs) coupled to the feed line.
Abstract: Three types of ultrawideband (UWB) antennas with triple notched bands are proposed and investigated for UWB communication applications. The proposed antennas consist of a planar circular patch monopole UWB antenna and multiple etched slots on the patch and/or split ring resonators (SRRs) coupled to the feed line. Good agreement is achieved between the simulated and measured results. These techniques are significant for designing UWB antennas with multiple narrow frequency notched bands or for designing multiband antennas.

310 citations

Journal ArticleDOI
Binqi Yang1, Zhiqiang Yu1, Ji Lan1, Ruoqiao Zhang1, Jianyi Zhou1, Wei Hong1 
TL;DR: A 64-channel massive multiple-input multiple-output (MIMO) transceiver with a fully digital beamforming (DBF) architecture for fifth-generation millimeter-wave communications is presented in this paper.
Abstract: A 64-channel massive multiple-input multiple-output (MIMO) transceiver with a fully digital beamforming (DBF) architecture for fifth-generation millimeter-wave communications is presented in this paper. The DBF-based massive MIMO transceiver is operated at 28-GHz band with a 500-MHz signal bandwidth and the time division duplex mode. The antenna elements are arranged as a 2-D array, which has 16 columns (horizontal direction) and 4 rows (vertical direction) for a better beamforming resolution in the horizontal plane. To achieve half-wavelength element spacing in the horizontal direction, a new sectorial transceiver array design with a bent substrate-integrated waveguide is proposed. The measured results show that an excellent RF performance is achieved. The system performance is tested with the over-the-air technique to verify the feasibility of the proposed DBF-based massive MIMO transceiver for high data rate millimeter-wave communications. Using the beam-tracking technique and two streams of QAM-64 signals, the proposed millimeter-wave MIMO transceiver can achieve a steady 5.3-Gb/s throughput for a single user in fast mobile environments. In the multiple-user MIMO scenario, by delivering 20 noncoherent data streams to eight four-channel user terminals, it achieves a downlink peak data rate of 50.73 Gb/s with the spectral efficiency of 101.5 b/s/Hz.

302 citations

Journal ArticleDOI
TL;DR: In this paper, a substrate integrated waveguide (SIW) multibeam antenna is proposed for mobile satellite communications using beam switching and diversity techniques, which employs an SIW Rotman lens as the beamforming network.
Abstract: A new type of substrate integrated waveguide (SIW) multibeam antenna is proposed for mobile satellite communications using beam switching and diversity techniques. It employs an SIW Rotman lens as the beamforming network. The prototype of a single multibeam antenna is implemented at 28.5 GHz with seven input ports and an antenna array constructed by nine SIW linear slot arrays, which can generate a corresponding number of beams along one dimension. Several such antennas are grouped in two different ways to cover a 2-D solid angle with multiple beams. Experiment results show that the 2-D solid angle around (-40deg, 40deg) X (-35deg, 35deg) or (-25deg, 25deg) x (-35deg, 35deg) are covered with 20 or 25 beams with 5 -dB beamwidth, respectively. It is demonstrated that this type of printed multibeam antenna is a good choice for communication applications where mobility and high gain are simultaneously required.

202 citations

Journal ArticleDOI
Binqi Yang1, Zhiqiang Yu1, Yunyang Dong1, Jianyi Zhou1, Wei Hong1 
TL;DR: In this article, a low-complexity metallic tapered slot antenna (TSA) array for millimeter-wave multibeam massive multiple-input multiple-output (MIMO) communication is proposed.
Abstract: A low-complexity metallic tapered slot antenna (TSA) array for millimeter-wave multibeam massive multiple-input multiple-output communication is proposed in this paper. Good beamforming performance can be achieved by the developed antenna array because the element spacing can easily meet the requirement of half-wavelength in the H-plane. The antenna element is fed by a substrate-integrated waveguide, which can be directly integrated with the millimeter-wave circuits. The proposed TSA is fabricated and measured. Measured results show that the reflection coefficient is lower than −15 dB Voltage Standing Wave Ratio ((VSWR) ≤ 1.45) within the frequency range from 22.5 to 32 GHz, which covers the 24.25–27.5-GHz band proposed by International Telecommunications Union (ITU) and the 27.5–28.35-GHz band proposed by Federal Communications Commission (FCC) for 5G. The gain of the antenna element varies from 8.2 to 9.6 dBi over the frequency range of 24–32 GHz. The simulated and measured results also illustrate good radiation patterns across the wide frequency band (24–32 GHz). A $1\times 4$ H-plane array integrated with the multichannel millimeter-wave transceivers on one PCB is demonstrated and excellent performance is achieved.

160 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components, as well as their application in the development of circuits and components operating in the microwave and millimetre wave region.
Abstract: Substrate-integrated waveguide (SIW) technology represents an emerging and very promising candidate for the development of circuits and components operating in the microwave and millimetre-wave region. SIW structures are generally fabricated by using two rows of conducting cylinders or slots embedded in a dielectric substrate that connects two parallel metal plates, and permit the implementation of classical rectangular waveguide components in planar form, along with printed circuitry, active devices and antennas. This study aims to provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components.

1,129 citations

Journal ArticleDOI
TL;DR: This paper provides an overview of the existing multibeam antenna technologies which include the passiveMultibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeams phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures.
Abstract: With the demanding system requirements for the fifth-generation (5G) wireless communications and the severe spectrum shortage at conventional cellular frequencies, multibeam antenna systems operating in the millimeter-wave frequency bands have attracted a lot of research interest and have been actively investigated. They represent the key antenna technology for supporting a high data transmission rate, an improved signal-to-interference-plus-noise ratio, an increased spectral and energy efficiency, and versatile beam shaping, thereby holding a great promise in serving as the critical infrastructure for enabling beamforming and massive multiple-input multiple-output (MIMO) that boost the 5G. This paper provides an overview of the existing multibeam antenna technologies which include the passive multibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeam phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures. Specifically, their principles of operation, design, and implementation, as well as a number of illustrative application examples are reviewed. Finally, the suitability of these MBAs for the future 5G massive MIMO wireless systems as well as the associated challenges is discussed.

737 citations

Journal ArticleDOI
01 Jul 2021
TL;DR: This work rigorously discusses the fundamental changes required in the core networks of the future, such as the redesign or significant reduction of the transport architecture that serves as a major source of latency for time-sensitive applications.
Abstract: Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called “G’s” is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. More precisely, we present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next-generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges and possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack (i.e., from applications to the physical layer). Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G ecosystem will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands and provide a unique perspective on the physical and higher layer challenges relating to the design of next-generation core networks, new modulation and coding methods, novel multiple-access techniques, antenna arrays, wave propagation, radio frequency transceiver design, and real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future, such as the redesign or significant reduction of the transport architecture that serves as a major source of latency for time-sensitive applications. This is in sharp contrast to the present hierarchical network architectures that are not suitable to realize many of the anticipated 6G services. While evaluating the strengths and weaknesses of key candidate 6G technologies, we differentiate what may be practically achievable over the next decade, relative to what is possible in theory. Keeping this in mind, we present concrete research challenges for each of the discussed system aspects, providing inspiration for what follows.

529 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey three new multiple antenna technologies that can play key roles in beyond 5G networks: cell-free massive MIMO, beamspace massive mIMO and intelligent reflecting surfaces.
Abstract: Multiple antenna technologies have attracted much research interest for several decades and have gradually made their way into mainstream communication systems. Two main benefits are adaptive beamforming gains and spatial multiplexing, leading to high data rates per user and per cell, especially when large antenna arrays are adopted. Since multiple antenna technology has become a key component of the fifth-generation (5G) networks, it is time for the research community to look for new multiple antenna technologies to meet the immensely higher data rate, reliability, and traffic demands in the beyond 5G era. Radically new approaches are required to achieve orders-of-magnitude improvements in these metrics. There will be large technical challenges, many of which are yet to be identified. In this paper, we survey three new multiple antenna technologies that can play key roles in beyond 5G networks: cell-free massive MIMO, beamspace massive MIMO, and intelligent reflecting surfaces. For each of these technologies, we present the fundamental motivation, key characteristics, recent technical progresses, and provide our perspectives for future research directions. The paper is not meant to be a survey/tutorial of a mature subject, but rather serve as a catalyst to encourage more research and experiments in these multiple antenna technologies.

430 citations

Journal ArticleDOI
TL;DR: In this paper, a substrate integrated waveguide with square complementary split-ring resonators (CSRRs) etched on the waveguide surface is investigated, which allows the implementation of a forward-wave passband propagating below the characteristic cutoff frequency of waveguide.
Abstract: A substrate integrated waveguide with square complementary split-ring resonators (CSRRs) etched on the waveguide surface is investigated in this paper. The proposed structures allow the implementation of a forward-wave passband propagating below the characteristic cutoff frequency of the waveguide. By changing the orientations of the CSRRs, which are incorporated in the waveguide surface and can be interpreted in terms of electric dipoles, varied passband characteristics are observed. A detailed explanation for the generation and variations of the passbands has been illuminated. The application of this waveguide and CSRR combination technique to the design of miniaturized waveguide bandpass filters characterized by transmission zeros is then illustrated. Filter design methodology is examined. These proposed filters exhibit high selectivity and compact size due to the employment of the subwavelength resonators and an evanescent-wave transmission. By slightly altering the configuration of the CSRRs, we find that the propagation of the TE10 mode can be suppressed and filters with improved selectivity and stopband rejection can be obtained. To verify the presented concept, three different types of filters are fabricated based on the standard printed circuit board process. The measured results are in good agreement with the simulation.

340 citations