scispace - formally typeset
Search or ask a question
Author

Jianying Huang

Bio: Jianying Huang is an academic researcher from Fuzhou University. The author has contributed to research in topics: Materials science & Coating. The author has an hindex of 49, co-authored 118 publications receiving 8272 citations. Previous affiliations of Jianying Huang include Chinese Academy of Sciences & Nanyang Technological University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the crystal structure of 1D TiO2 and the latest development on the fabrication of 2D and 3D 1DTiO2 nanostructured materials are reviewed.
Abstract: One-dimensional TiO2 (1D TiO2) nanomaterials with unique structural and functional properties have been extensively used in various fields including photocatalytic degradation of pollutants, photocatalytic CO2 reduction into energy fuels, water splitting, solar cells, supercapacitors and lithium-ion batteries. In the past few decades, 1D TiO2 nanostructured materials with a well-controlled size and morphology have been designed and synthesized. Compared to 0D and 2D nanostructures, more attention has been paid to 1D TiO2 nanostructures due to their high aspect ratio, large specific surface area, and excellent electronic or ionic charge transport properties. In this review, we present the crystal structure of TiO2 and the latest development on the fabrication of 1D TiO2 nanostructured materials. Besides, we will look into some critical engineering strategies that give rise to the excellent properties of 1D TiO2 nanostructures such as improved enlargement of the surface area, light absorption and efficient separation of electrons/holes that benefit their potential applications. Moreover, their corresponding environmental and energy applications are described and discussed. With the fast development of the current economy and technology, more and more effort will be put into endowing TiO2-based materials with advanced functionalities and other promising applications.

757 citations

Journal ArticleDOI
TL;DR: Inspired by the superhydrophobic lotus surface in nature, special wettability has attracted a lot of interest and attention in both academia and industry as discussed by the authors, and the strategies for constructing fabric surfaces with an anti-wetting property are categorized and discussed based on the morphology of particles coated on the textile fibre.
Abstract: Inspired by the superhydrophobic lotus surface in nature, special wettability has attracted a lot of interest and attention in both academia and industry In this review, theoretical models and fabrication strategies of superhydrophobic textiles have been discussed in detail The strategies for constructing fabric surfaces with an anti-wetting property are categorized and discussed based on the morphology of particles coated on the textile fibre Such special wettability textile surfaces are demonstrated with self-cleaning, oil/water separation, self-healing, UV-blocking, photocatalytic, anti-bacterial, and flame-retardant performances Correspondingly, potential applications have been illustrated for self-cleaning, oil/water separation, asymmetric/anisotropic wetting janus fabric, microfluidic manipulation, and micro-templates for patterning In each section, representative studies are highlighted with emphasis on the special wetting ability and other relevant properties Finally, the difficulties and challenges for practical application were briefly discussed

469 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a method to solve the problem of artificial neural networks in the field of computer vision and applied it to artificial intelligence in the context of artificial intelligence.
Abstract: National Nature Science Foundation of China [50571085, 20773100, 20620130427, 20773135]; National Basic Research Program of China 973 Program [2007CB935603]; Technology Program of Fujian and Xiamen, China [2007H0031, 3502Z20073004]; Chinese Academy of Sciences

429 citations

Journal ArticleDOI
TL;DR: In this article, a facile and environmentally friendly strategy to deposit an organically modified silica aerogel (ormosil) thin film onto the fabrics first, followed by polydimethylsiloxane (PDMS) topcoating.
Abstract: Superhydrophobic cotton fabrics were prepared via a facile and environmentally friendly strategy to deposit an organically modified silica aerogel (ormosil) thin film onto the fabrics first, followed by polydimethylsiloxane (PDMS) topcoating. The PDMS–ormosil coating displayed a uniform 3D fractal-like structure with numerous loose micro-scale pores, while the PDMS layer increased the binding strength of the hierarchical ormosil film to form a highly robust porous network on the fibers. In comparison with hydrophilic cotton fabrics, the modified cotton fabric exhibited a highly superhydrophobic activity with a water contact angle higher than 160° and a sliding angle lower than 10°. The as-constructed PDMS–ormosil@fabrics are able to withstand 100 cycles of abrasion and 5 cycles of accelerated machine wash without an apparent decrease of superhydrophobicity. In addition, the superhydrophobic cotton fabrics are very stable in strongly acidic and alkaline solutions. Furthermore, the superhydrophobic coating has no or negligible adverse effect on the important textile physical properties of the cotton fabric, such as the strength, air permeability, and flexibility. The composite super-antiwetting fabrics have demonstrated excellent anti-fouling, self-cleaning ability and are highly efficient in oil–water separation for various oil–water mixtures. This facile synthesis technique has the advantages of scalable fabrication of multifunctional fabrics for potential applications in self-cleaning and versatile water–oil separation.

410 citations

Journal ArticleDOI
TL;DR: A comprehensive review on recent progress of the synthesis and modification ofTiO2 nanotubes to be used for photo/photoelectro‐catalytic water splitting and the future development of TiO2 Nanotubes is discussed.
Abstract: Hydrogen production from water splitting by photo/photoelectron-catalytic process is a promising route to solve both fossil fuel depletion and environmental pollution at the same time. Titanium dioxide (TiO2) nanotubes have attracted much interest due to their large specific surface area and highly ordered structure, which has led to promising potential applications in photocatalytic degradation, photoreduction of CO2, water splitting, supercapacitors, dye-sensitized solar cells, lithium-ion batteries and biomedical devices. Nanotubes can be fabricated via facile hydrothermal method, solvothermal method, template technique and electrochemical anodic oxidation. In this report, we provide a comprehensive review on recent progress of the synthesis and modification of TiO2 nanotubes to be used for photo/photoelectro-catalytic water splitting. The future development of TiO2 nanotubes is also discussed.

409 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Generations Yi Ma,† Xiuli Wang,† Yushuai Jia,† Xiaobo Chen,‡ Hongxian Han,*,† and Can Li*,†
Abstract: Generations Yi Ma,† Xiuli Wang,† Yushuai Jia,† Xiaobo Chen,‡ Hongxian Han,*,† and Can Li*,† †State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China ‡Department of Chemistry, College of Arts and Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110, United States

1,990 citations

Posted Content
TL;DR: The two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials.
Abstract: We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Mn3O4 nanoparticles grown selectively on RGO sheets over free particle growth in solution allowed for the electrically insulating Mn3O4 nanoparticles wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ~900mAh/g near its theoretical capacity with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn3O4 nanoparticles grown atop. The Mn3O4/RGO hybrid could be a promising candidate material for high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for design and synthesis of battery electrodes based on highly insulating materials.

1,587 citations

Journal ArticleDOI
TL;DR: This review illustrates that it is possible to employ the fundamental principles underlying photosynthesis and the tools of chemical and materials science to design and prepare photocatalysts for overall water splitting.
Abstract: Solar-driven water splitting provides a leading approach to store the abundant yet intermittent solar energy and produce hydrogen as a clean and sustainable energy carrier. A straightforward route to light-driven water splitting is to apply self-supported particulate photocatalysts, which is expected to allow solar hydrogen to be competitive with fossil-fuel-derived hydrogen on a levelized cost basis. More importantly, the powder-based systems can lend themselves to making functional panels on a large scale while retaining the intrinsic activity of the photocatalyst. However, all attempts to generate hydrogen via powder-based solar water-splitting systems to date have unfortunately fallen short of the efficiency values required for practical applications. Photocatalysis on photocatalyst particles involves three sequential steps: (i) absorption of photons with higher energies than the bandgap of the photocatalysts, leading to the excitation of electron-hole pairs in the particles, (ii) charge separation and migration of these photoexcited carriers, and (iii) surface chemical reactions based on these carriers. In this review, we focus on the challenges of each step and summarize material design strategies to overcome the obstacles and limitations. This review illustrates that it is possible to employ the fundamental principles underlying photosynthesis and the tools of chemical and materials science to design and prepare photocatalysts for overall water splitting.

1,332 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods can be found in this paper, where the synthetic methodologies and corresponding growth mechanisms, different structures, doping and alloying, position-controlled growth on substrates, and finally, their functional properties as catalysts, hydrophobic surfaces, sensors, and in nanoelectronic, optical, optoelectronics, and energy harvesting devices.
Abstract: One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their current and future diverse technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and corresponding growth mechanisms, different structures, doping and alloying, position-controlled growth on substrates, and finally, their functional properties as catalysts, hydrophobic surfaces, sensors, and in nanoelectronic, optical, optoelectronic, and energy harvesting devices.

1,247 citations