scispace - formally typeset
Search or ask a question
Author

Jianzhong Wu

Bio: Jianzhong Wu is an academic researcher from University of California, Riverside. The author has contributed to research in topics: Mesoscopic physics & Statistical mechanics. The author has an hindex of 1, co-authored 1 publications receiving 274 citations.

Papers
More filters
01 Jan 2006
TL;DR: In this article, the authors summarized recent advances of classical density functional theory with emphasis on applications to quantitative modeling of the phase and interfacial behavior of condensed fluids and soft materials, including colloids, polymer solutions, nanocomposites, liquid crystals, and biological systems.
Abstract: Understanding the microscopic structure and macroscopic properties of condensed matter from a molecular perspective is important for both traditional and modern chemical engineering. A cornerstone of such understanding is provided by statistical mechanics, which bridges the gap between molecular events and the structural and physiochemical properties of macro- and mesoscopic systems. With ever-increasing computer power, molecular simulations and ab initio quantum mechanics are promising to provide a nearly exact route to accomplishing the full potential of statistical mechanics. However, in light of their versatility for solving problems involving multiple length and timescales that are yet unreachable by direct simulations, phenomenological and semiempirical methods remain relevant for chemical engineering applications in the foreseeable future. Classical density functional theory offers a compromise: on the one hand, it is able to retain the theoretical rigor of statistical mechanics and, on the other hand, similar to a phenomenological method, it demands only modest computational cost for modeling the properties of uniform and inhomogeneous systems. Recent advances are summarized of classical density functional theory with emphasis on applications to quantitative modeling of the phase and interfacial behavior of condensed fluids and soft materials, including colloids, polymer solutions, nanocomposites, liquid crystals, and biological systems. Attention is also given to some potential applications of density functional theory to material fabrications and biomolecular engineering. © 2005 American Institute of Chemical Engineers AIChE J, 52: 1169 –1193, 2006

274 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The new local density functional, called M06-L, is designed to capture the main dependence of the exchange-correlation energy on local spin density, spin density gradient, and spin kinetic energy density, and it is parametrized to satisfy the uniform-electron-gas limit.
Abstract: We present a new local density functional, called M06-L, for main-group and transition element thermochemistry, thermochemical kinetics, and noncovalent interactions. The functional is designed to capture the main dependence of the exchange-correlation energy on local spin density, spin density gradient, and spin kinetic energy density, and it is parametrized to satisfy the uniform-electron-gas limit and to have good performance for both main-group chemistry and transition metal chemistry. The M06-L functional and 14 other functionals have been comparatively assessed against 22 energetic databases. Among the tested functionals, which include the popular B3LYP, BLYP, and BP86 functionals as well as our previous M05 functional, the M06-L functional gives the best overall performance for a combination of main-group thermochemistry, thermochemical kinetics, and organometallic, inorganometallic, biological, and noncovalent interactions. It also does very well for predicting geometries and vibrational frequencies. Because of the computational advantages of local functionals, the present functional should be very useful for many applications in chemistry, especially for simulations on moderate-sized and large systems and when long time scales must be addressed. © 2006 American Institute of Physics. DOI: 10.1063/1.2370993

4,154 citations

Journal ArticleDOI
01 Jun 2009-Carbon
TL;DR: In this paper, a quenched solid density functional theory (QSDFT) model was proposed for the pore size distribution in the range of pore widths from 0.4 to 35 nm from nitrogen at 77.4 K and argon at 87.3 K isotherms.

703 citations

Journal ArticleDOI
TL;DR: Different strategies commonly used to formulate the free-energy functional of complex fluids for either phenomena-oriented applications or as a generic description of the thermodynamic nonideality owing to various components of intermolecular forces are discussed.
Abstract: Density-functional theory (DFT) and its variations provide a fruitful approach to the computational modeling of the microscopic structures and phase behavior of soft-condensed matter. The methodology takes deep root in quantum mechanics but shares a mathematical similarity with a number of classical approaches in statistical mechanics. This review discusses different strategies commonly used to formulate the free-energy functional of complex fluids for either phenomena-oriented applications or as a generic description of the thermodynamic nonideality owing to various components of intermolecular forces. We emphasize the connections among different schemes of DFT approximations, their underlying assumptions, and inherent limitations. We also address extensions of equilibrium DFT to phenomenological theories for the dynamic properties of complex fluids and for the kinetics of phase transitions. In addition, we highlight the recent literature concerning applications of DFT to diverse static and time-dependent phenomena in complex fluids.

343 citations

Journal ArticleDOI
TL;DR: Applications of coarse-grained models to changes of the membrane topology are illustrated with studies of membrane fusion utilizing simulations and self-consistent field theory.

314 citations

Journal ArticleDOI
TL;DR: A new density functional for hard-sphere mixtures which is based on a recent mixture extension of the Carnahan-Starling equation of state is derived, which improves upon consistency with an exact scaled-particle theory relation in the case of the pure fluid.
Abstract: In the spirit of the White Bear version of fundamental measure theory we derive a new density functional for hard-sphere mixtures which is based on a recent mixture extension of the Carnahan-Starling equation of state. In addition to the capability to predict inhomogeneous density distributions very accurately, like the original White Bear version, the new functional improves upon consistency with an exact scaled-particle theory relation in the case of the pure fluid. We examine consistency in detail within the context of morphological thermodynamics. Interestingly, for the pure fluid the degree of consistency of the new version is not only higher than for the original White Bear version but also higher than for Rosenfeld's original fundamental measure theory.

179 citations