scispace - formally typeset
Search or ask a question
Author

Jianzhong Zhang

Other affiliations: Motorola, Qualcomm, Harvard University  ...read more
Bio: Jianzhong Zhang is an academic researcher from Samsung. The author has contributed to research in topics: MIMO & Base station. The author has an hindex of 52, co-authored 306 publications receiving 9285 citations. Previous affiliations of Jianzhong Zhang include Motorola & Qualcomm.


Papers
More filters
Journal ArticleDOI
Young-Han Nam1, Boon Loong Ng1, Krishna Sayana1, Yang Li1, Jianzhong Zhang1, Younsun Kim1, Ju-Ho Lee1 
TL;DR: The simulation results show that the proposed FD-MIMO system with 32 antenna ports achieves 2-3.6 times cell average throughput gain and 1-5 times cell edge throughput gain compared to the 4G LTE system of two antenna ports at the BS.
Abstract: This article considers a practical implementation of massive MIMO systems [1]. Although the best performance can be achieved when a large number of active antennas are placed only in the horizontal domain, BS form factor limitation often makes horizontal array placement infeasible. To cope with this limitation, this article introduces full-dimension MIMO (FD-MIMO) cellular wireless communication system, where active antennas are placed in a 2D grid at BSs. For analysis of the FD-MIMO systems, a 3D spatial channel model is introduced, on which system-level simulations are conducted. The simulation results show that the proposed FD-MIMO system with 32 antenna ports achieves 2-3.6 times cell average throughput gain and 1.5-5 times cell edge throughput gain compared to the 4G LTE system of two antenna ports at the BS.

354 citations

Journal ArticleDOI
TL;DR: Various MIMO technologies employed in LTE are introduced and a brief overview on the MIMo technologies currently discussed in the LTE-Advanced forum is provided.
Abstract: 3rd Generation Partnership Project (3GPP) has recently completed the specification of the Long Term Evolution (LTE) standard. Majority of the world's operators and vendors are already committed to LTE deployments and developments, making LTE the market leader in the upcoming evolution to 4G wireless communication systems. Multiple input multiple output (MIMO) technologies introduced in LTE such as spatial multiplexing, transmit diversity, and beamforming are key components for providing higher peak rate at a better system efficiency, which are essential for supporting future broadband data service over wireless links. Further extension of LTE MIMO technologies is being studied under the 3GPP study item "LTE-Advanced" to meet the requirement of IMT-Advanced set by International Telecommunication Union Radiocommunication Sector (ITU-R). In this paper, we introduce various MIMO technologies employed in LTE and provide a brief overview on the MIMO technologies currently discussed in the LTE-Advanced forum.

300 citations

Journal ArticleDOI
TL;DR: Key features for FD-MIMO systems are presented, a summary of the major issues for the standardization and practical system design, and performance evaluations for typical FD- MIMO scenarios are presented.
Abstract: Multiple-input multiple-output (MIMO) systems with a large number of base station antennas, often called massive MIMO, have received much attention in academia and industry as a means to improve the spectral efficiency, energy efficiency, and processing complexity of next generation cellular systems. The mobile communication industry has initiated a feasibility study of massive MIMO systems to meet the increasing demand of future wireless systems. Field trials of the proof-of-concept systems have demonstrated the potential gain of the Full-Dimension MIMO (FD-MIMO), an official name for the MIMO enhancement in the 3rd generation partnership project (3GPP). 3GPP initiated standardization activity for the seamless integration of this technology into current 4G LTE systems. In this article, we provide an overview of FD-MIMO systems, with emphasis on the discussion and debate conducted on the standardization process of Release 13. We present key features for FD-MIMO systems, a summary of the major issues for the standardization and practical system design, and performance evaluations for typical FD-MIMO scenarios.

215 citations

Patent
29 May 2008
TL;DR: In this paper, a method for feedback and transmission of multi-user (MU) multiple input multiple output (MIMO) in a wireless communication system is presented, which includes steps of selecting subset codebook or full code book based on traffic load of a base station, and broadcasting the selected codebook to user equipments.
Abstract: The present invention provides a method for feedback and transmission of multi-user (MU) multiple input multiple output (MIMO) in a wireless communication system. The method includes steps of selecting subset codebook or full code book based on traffic load of a base station, and broadcasting the selected codebook to user equipments. In high traffic load, subset codebook is selected, and in low traffic load, full codebook is selected. User stations calculated a channel quality indicator of a spatial codeword vector that is included in the selected codebook. Information of the maximum channel quality indicator is sent to the base station together with a precoder of the user equipment. The base station selects user equipments based on the information of the maximum channel quality indicator and precoder, and transmits precoder signal and data signal to the user equipments. The present invention also provides a system for the base station that causes the base station to perform the above mentioned operations.

165 citations

Journal ArticleDOI
TL;DR: The results show that unless the employed beams are very wide, initial beam training with full pilot reuse is nearly as good as perfect beam alignment.
Abstract: Enabling the high data rates of millimeter wave (mmWave) cellular systems requires deploying large antenna arrays at both the basestations and mobile users. Prior work on coverage and rate of mmWave cellular networks focused on the case when basestations and mobile beamforming vectors are predesigned for maximum beamforming gains. Designing beamforming/combining vectors, though, requires training, which may impact both the SINR coverage and rate of mmWave systems. This paper evaluates mmWave cellular network performance while accounting for the beam training/association overhead. First, a model for the initial beam association is developed based on beam sweeping and downlink control pilot reuse. To incorporate the impact of beam training, a new metric, called the effective reliable rate, is defined and adopted. Using stochastic geometry, the effective rate of mmWave cellular networks is derived for two special cases: near-orthogonal pilots and full pilot reuse. Analytical and simulation results provide insights into the answers of two important questions. First, what is the impact of beam association on mmWave network performance? Then, should orthogonal or reused pilots be employed? The results show that unless the employed beams are very wide, initial beam training with full pilot reuse is nearly as good as perfect beam alignment.

145 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

01 Jan 2003

3,093 citations

Journal ArticleDOI
TL;DR: This paper addresses the potential impact of pilot contamination caused by the use of non-orthogonal pilot sequences by users in adjacent cells, and analyzes the energy efficiency and degrees of freedom provided by massive MIMO systems to enable efficient single-carrier transmission.
Abstract: Massive multiple-input multiple-output (MIMO) wireless communications refers to the idea equipping cellular base stations (BSs) with a very large number of antennas, and has been shown to potentially allow for orders of magnitude improvement in spectral and energy efficiency using relatively simple (linear) processing. In this paper, we present a comprehensive overview of state-of-the-art research on the topic, which has recently attracted considerable attention. We begin with an information theoretic analysis to illustrate the conjectured advantages of massive MIMO, and then we address implementation issues related to channel estimation, detection and precoding schemes. We particularly focus on the potential impact of pilot contamination caused by the use of non-orthogonal pilot sequences by users in adjacent cells. We also analyze the energy efficiency achieved by massive MIMO systems, and demonstrate how the degrees of freedom provided by massive MIMO systems enable efficient single-carrier transmission. Finally, the challenges and opportunities associated with implementing massive MIMO in future wireless communications systems are discussed.

2,046 citations

Journal ArticleDOI
TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Abstract: There is considerable pressure to define the key requirements of 5G, develop 5G standards, and perform technology trials as quickly as possible. Normally, these activities are best done in series but there is a desire to complete these tasks in parallel so that commercial deployments of 5G can begin by 2020. 5G will not be an incremental improvement over its predecessors; it aims to be a revolutionary leap forward in terms of data rates, latency, massive connectivity, network reliability, and energy efficiency. These capabilities are targeted at realizing high-speed connectivity, the Internet of Things, augmented virtual reality, the tactile internet, and so on. The requirements of 5G are expected to be met by new spectrum in the microwave bands (3.3-4.2 GHz), and utilizing large bandwidths available in mm-wave bands, increasing spatial degrees of freedom via large antenna arrays and 3-D MIMO, network densification, and new waveforms that provide scalability and flexibility to meet the varying demands of 5G services. Unlike the one size fits all 4G core networks, the 5G core network must be flexible and adaptable and is expected to simultaneously provide optimized support for the diverse 5G use case categories. In this paper, we provide an overview of 5G research, standardization trials, and deployment challenges. Due to the enormous scope of 5G systems, it is necessary to provide some direction in a tutorial article, and in this overview, the focus is largely user centric, rather than device centric. In addition to surveying the state of play in the area, we identify leading technologies, evaluating their strengths and weaknesses, and outline the key challenges ahead, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.

1,659 citations