scispace - formally typeset
Search or ask a question
Author

Jiaqing He

Bio: Jiaqing He is an academic researcher from Southern University of Science and Technology. The author has contributed to research in topics: Thermoelectric effect & Thermoelectric materials. The author has an hindex of 71, co-authored 276 publications receiving 21754 citations. Previous affiliations of Jiaqing He include Argonne National Laboratory & Wuhan University.


Papers
More filters
Journal ArticleDOI
20 Sep 2012-Nature
TL;DR: It is shown that heat-carrying phonons with long mean free paths can be scattered by controlling and fine-tuning the mesoscale architecture of nanostructured thermoelectric materials, and an increase in ZT beyond the threshold of 2 highlights the role of, and need for, multiscale hierarchical architecture in controlling phonon scattering in bulk thermoeLECTrics.
Abstract: Controlling the structure of thermoelectric materials on all length scales (atomic, nanoscale and mesoscale) relevant for phonon scattering makes it possible to increase the dimensionless figure of merit to more than two, which could allow for the recovery of a significant fraction of waste heat with which to produce electricity.

3,670 citations

Journal ArticleDOI
24 May 2012-Nature
TL;DR: It is shown that the solution-processable p-type direct bandgap semiconductor CsSnI3 can be used for hole conduction in lieu of a liquid electrolyte and enhances visible light absorption on the red side of the spectrum to outperform the typical dye-sensitized solar cells in this spectral region.
Abstract: Dye-sensitized solar cells based on titanium dioxide (TiO(2)) are promising low-cost alternatives to conventional solid-state photovoltaic devices based on materials such as Si, CdTe and CuIn(1-x)Ga(x)Se(2) (refs 1, 2). Despite offering relatively high conversion efficiencies for solar energy, typical dye-sensitized solar cells suffer from durability problems that result from their use of organic liquid electrolytes containing the iodide/tri-iodide redox couple, which causes serious problems such as electrode corrosion and electrolyte leakage. Replacements for iodine-based liquid electrolytes have been extensively studied, but the efficiencies of the resulting devices remain low. Here we show that the solution-processable p-type direct bandgap semiconductor CsSnI(3) can be used for hole conduction in lieu of a liquid electrolyte. The resulting solid-state dye-sensitized solar cells consist of CsSnI(2.95)F(0.05) doped with SnF(2), nanoporous TiO(2) and the dye N719, and show conversion efficiencies of up to 10.2 per cent (8.51 per cent with a mask). With a bandgap of 1.3 electronvolts, CsSnI(3) enhances visible light absorption on the red side of the spectrum to outperform the typical dye-sensitized solar cells in this spectral region.

1,571 citations

Journal ArticleDOI
08 Jan 2016-Science
TL;DR: A record high ZTdev ∼1.34, with ZT ranging from 0.7 to 2.0 at 300 to 773 kelvin, realized in hole-doped tin selenide (SnSe) crystals, arises from the ultrahigh power factor, which comes from a high electrical conductivity and a strongly enhanced Seebeck coefficient enabled by the contribution of multiple electronic valence bands present in SnSe.
Abstract: Thermoelectric technology, harvesting electric power directly from heat, is a promising environmentally friendly means of energy savings and power generation. The thermoelectric efficiency is determined by the device dimensionless figure of merit ZT(dev), and optimizing this efficiency requires maximizing ZT values over a broad temperature range. Here, we report a record high ZT(dev) ∼1.34, with ZT ranging from 0.7 to 2.0 at 300 to 773 kelvin, realized in hole-doped tin selenide (SnSe) crystals. The exceptional performance arises from the ultrahigh power factor, which comes from a high electrical conductivity and a strongly enhanced Seebeck coefficient enabled by the contribution of multiple electronic valence bands present in SnSe. SnSe is a robust thermoelectric candidate for energy conversion applications in the low and moderate temperature range.

1,542 citations

Journal ArticleDOI
TL;DR: This work has experimentally achieved concurrent phonon blocking and charge transmitting via the endotaxial placement of nanocrystals in a thermoelectric material host via crystallographic alignment of SrTe and PbTe lattices.
Abstract: Thermoelectric materials can directly generate electrical power from waste heat but the challenge is in designing efficient, stable and inexpensive systems. Nanostructuring in bulk materials dramatically reduces the thermal conductivity but simultaneously increases the charge carrier scattering, which has a detrimental effect on the carrier mobility. We have experimentally achieved concurrent phonon blocking and charge transmitting via the endotaxial placement of nanocrystals in a thermoelectric material host. Endotaxially arranged SrTe nanocrystals at concentrations as low as 2% were incorporated in a PbTe matrix doped with Na(2)Te. This effectively inhibits the heat flow in the system but does not affect the hole mobility, allowing a large power factor to be achieved. The crystallographic alignment of SrTe and PbTe lattices decouples phonon and electron transport and this allows the system to reach a thermoelectric figure of merit of 1.7 at ~800 K.

882 citations

Journal ArticleDOI
18 May 2018-Science
TL;DR: This work doped SnSe with bromine to make n-type SnSe crystals with the overlapping interlayer charge density (3D charge transport), a promising n- type thermoelectric material with electrons as the charge carriers and provides a new strategy to enhance out-of-plane electrical transport properties without degrading thermal properties.
Abstract: Thermoelectric technology enables the harvest of waste heat and its direct conversion into electricity. The conversion efficiency is determined by the materials figure of merit ZT . Here we show a maximum ZT of ~2.8 ± 0.5 at 773 kelvin in n-type tin selenide (SnSe) crystals out of plane. The thermal conductivity in layered SnSe crystals is the lowest in the out-of-plane direction [two-dimensional (2D) phonon transport]. We doped SnSe with bromine to make n-type SnSe crystals with the overlapping interlayer charge density (3D charge transport). A continuous phase transition increases the symmetry and diverges two converged conduction bands. These two factors improve carrier mobility, while preserving a large Seebeck coefficient. Our findings can be applied in 2D layered materials and provide a new strategy to enhance out-of-plane electrical transport properties without degrading thermal properties.

777 citations


Cited by
More filters
Journal ArticleDOI
02 Nov 2012-Science
TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Abstract: The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso-superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.

9,158 citations

Journal ArticleDOI
TL;DR: The use of a solid hole conductor dramatically improved the device stability compared to (CH3NH3)PbI3 -sensitized liquid junction cells.
Abstract: We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH3NH3)PbI3 as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI2 and deposited onto a submicron-thick mesoscopic TiO2 film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (JSC) exceeding 17 mA/cm2, an open circuit photovoltage (VOC) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH3NH3)PbI3 NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO2 film. The use of a solid hole conductor dramatically improved the device stability compared to (CH3NH3)PbI3 -sensitized liquid junction cells.

6,751 citations

Journal ArticleDOI
TL;DR: The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Abstract: Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiativ...

6,170 citations

Journal ArticleDOI
TL;DR: It is found that the chemical and physical properties of these materials strongly depend on the preparation method, and the properties of the title hybrid materials with those of the "all-inorganic" CsSnI3 and CsPbI3 prepared using identical synthetic methods.
Abstract: A broad organic–inorganic series of hybrid metal iodide perovskites with the general formulation AMI3, where A is the methylammonium (CH3NH3+) or formamidinium (HC(NH2)2+) cation and M is Sn (1 and 2) or Pb (3 and 4) are reported. The compounds have been prepared through a variety of synthetic approaches, and the nature of the resulting materials is discussed in terms of their thermal stability and optical and electronic properties. We find that the chemical and physical properties of these materials strongly depend on the preparation method. Single crystal X-ray diffraction analysis of 1–4 classifies the compounds in the perovskite structural family. Structural phase transitions were observed and investigated by temperature-dependent single crystal X-ray diffraction in the 100–400 K range. The charge transport properties of the materials are discussed in conjunction with diffuse reflectance studies in the mid-IR region that display characteristic absorption features. Temperature-dependent studies show a ...

4,372 citations