Author
Jiayi Ma
Other affiliations: Huazhong University of Science and Technology, Beijing Institute of Technology
Bio: Jiayi Ma is an academic researcher from Wuhan University. The author has contributed to research in topics: Computer science & Image fusion. The author has an hindex of 49, co-authored 230 publications receiving 8351 citations. Previous affiliations of Jiayi Ma include Huazhong University of Science and Technology & Beijing Institute of Technology.
Papers
More filters
TL;DR: This paper proposes a novel method to fuse two types of information using a generative adversarial network, termed as FusionGAN, which establishes an adversarial game between a generator and a discriminator, where the generator aims to generate a fused image with major infrared intensities together with additional visible gradients.
Abstract: Infrared images can distinguish targets from their backgrounds on the basis of difference in thermal radiation, which works well at all day/night time and under all weather conditions. By contrast, visible images can provide texture details with high spatial resolution and definition in a manner consistent with the human visual system. This paper proposes a novel method to fuse these two types of information using a generative adversarial network, termed as FusionGAN. Our method establishes an adversarial game between a generator and a discriminator, where the generator aims to generate a fused image with major infrared intensities together with additional visible gradients, and the discriminator aims to force the fused image to have more details existing in visible images. This enables that the final fused image simultaneously keeps the thermal radiation in an infrared image and the textures in a visible image. In addition, our FusionGAN is an end-to-end model, avoiding manually designing complicated activity level measurements and fusion rules as in traditional methods. Experiments on public datasets demonstrate the superiority of our strategy over state-of-the-arts, where our results look like sharpened infrared images with clear highlighted targets and abundant details. Moreover, we also generalize our FusionGAN to fuse images with different resolutions, say a low-resolution infrared image and a high-resolution visible image. Extensive results demonstrate that our strategy can generate clear and clean fused images which do not suffer from noise caused by upsampling of infrared information.
853 citations
TL;DR: This survey comprehensively survey the existing methods and applications for the fusion of infrared and visible images, which can serve as a reference for researchers inrared and visible image fusion and related fields.
Abstract: Infrared images can distinguish targets from their backgrounds based on the radiation difference, which works well in all-weather and all-day/night conditions. By contrast, visible images can provide texture details with high spatial resolution and definition in a manner consistent with the human visual system. Therefore, it is desirable to fuse these two types of images, which can combine the advantages of thermal radiation information in infrared images and detailed texture information in visible images. In this work, we comprehensively survey the existing methods and applications for the fusion of infrared and visible images. First, infrared and visible image fusion methods are reviewed in detail. Meanwhile, image registration, as a prerequisite of image fusion, is briefly introduced. Second, we provide an overview of the main applications of infrared and visible image fusion. Third, the evaluation metrics of fusion performance are discussed and summarized. Fourth, we select eighteen representative methods and nine assessment metrics to conduct qualitative and quantitative experiments, which can provide an objective performance reference for different fusion methods and thus support relative engineering with credible and solid evidence. Finally, we conclude with the current status of infrared and visible image fusion and deliver insightful discussions and prospects for future work. This survey can serve as a reference for researchers in infrared and visible image fusion and related fields.
849 citations
TL;DR: A novel fusion algorithm, named Gradient Transfer Fusion (GTF), based on gradient transfer and total variation (TV) minimization is proposed, which can keep both the thermal radiation and the appearance information in the source images.
Abstract: We propose a new IR/visible fusion method based on gradient transfer and TV minimization.It can keep both the thermal radiation and the appearance information in the source images.We generalize the proposed method to fuse image pairs without pre-registration.Our fusion results look like sharpened IR images with highlighted target and abundant textures.To the best of our knowledge, the proposed fusion strategy has not yet been studied. In image fusion, the most desirable information is obtained from multiple images of the same scene and merged to generate a composite image. This resulting new image is more appropriate for human visual perception and further image-processing tasks. Existing methods typically use the same representations and extract the similar characteristics for different source images during the fusion process. However, it may not be appropriate for infrared and visible images, as the thermal radiation in infrared images and the appearance in visible images are manifestations of two different phenomena. To keep the thermal radiation and appearance information simultaneously, in this paper we propose a novel fusion algorithm, named Gradient Transfer Fusion (GTF), based on gradient transfer and total variation (TV) minimization. We formulate the fusion problem as an ?1-TV minimization problem, where the data fidelity term keeps the main intensity distribution in the infrared image, and the regularization term preserves the gradient variation in the visible image. We also generalize the formulation to fuse image pairs without pre-registration, which greatly enhances its applicability as high-precision registration is very challenging for multi-sensor data. The qualitative and quantitative comparisons with eight state-of-the-art methods on publicly available databases demonstrate the advantages of GTF, where our results look like sharpened infrared images with more appearance details.
729 citations
TL;DR: This paper proposes an efficient algorithm, called vector field consensus, for establishing robust point correspondences between two sets of points, and suggests a two-stage strategy, where the nonparametric model is used to reduce the size of the putative set and a parametric variant of the approach to estimate the geometric parameters.
Abstract: In this paper, we propose an efficient algorithm, called vector field consensus, for establishing robust point correspondences between two sets of points. Our algorithm starts by creating a set of putative correspondences which can contain a very large number of false correspondences, or outliers, in addition to a limited number of true correspondences (inliers). Next, we solve for correspondence by interpolating a vector field between the two point sets, which involves estimating a consensus of inlier points whose matching follows a nonparametric geometrical constraint. We formulate this a maximum a posteriori (MAP) estimation of a Bayesian model with hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We impose nonparametric geometrical constraints on the correspondence, as a prior distribution, using Tikhonov regularizers in a reproducing kernel Hilbert space. MAP estimation is performed by the EM algorithm which by also estimating the variance of the prior model (initialized to a large value) is able to obtain good estimates very quickly (e.g., avoiding many of the local minima inherent in this formulation). We illustrate this method on data sets in 2D and 3D and demonstrate that it is robust to a very large number of outliers (even up to 90%). We also show that in the special case where there is an underlying parametric geometrical model (e.g., the epipolar line constraint) that we obtain better results than standard alternatives like RANSAC if a large number of outliers are present. This suggests a two-stage strategy, where we use our nonparametric model to reduce the size of the putative set and then apply a parametric variant of our approach to estimate the geometric parameters. Our algorithm is computationally efficient and we provide code for others to use it. In addition, our approach is general and can be applied to other problems, such as learning with a badly corrupted training data set.
489 citations
TL;DR: This survey introduces feature detection, description, and matching techniques from handcrafted methods to trainable ones and provides an analysis of the development of these methods in theory and practice, and briefly introduces several typical image matching-based applications.
Abstract: As a fundamental and critical task in various visual applications, image matching can identify then correspond the same or similar structure/content from two or more images. Over the past decades, growing amount and diversity of methods have been proposed for image matching, particularly with the development of deep learning techniques over the recent years. However, it may leave several open questions about which method would be a suitable choice for specific applications with respect to different scenarios and task requirements and how to design better image matching methods with superior performance in accuracy, robustness and efficiency. This encourages us to conduct a comprehensive and systematic review and analysis for those classical and latest techniques. Following the feature-based image matching pipeline, we first introduce feature detection, description, and matching techniques from handcrafted methods to trainable ones and provide an analysis of the development of these methods in theory and practice. Secondly, we briefly introduce several typical image matching-based applications for a comprehensive understanding of the significance of image matching. In addition, we also provide a comprehensive and objective comparison of these classical and latest techniques through extensive experiments on representative datasets. Finally, we conclude with the current status of image matching technologies and deliver insightful discussions and prospects for future works. This survey can serve as a reference for (but not limited to) researchers and engineers in image matching and related fields.
474 citations
Cited by
More filters
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.
10,141 citations
Journal Article•
3,940 citations
Posted Content•
TL;DR: This work proposes the Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities, and performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques.
Abstract: When building a unified vision system or gradually adding new capabilities to a system, the usual assumption is that training data for all tasks is always available. However, as the number of tasks grows, storing and retraining on such data becomes infeasible. A new problem arises where we add new capabilities to a Convolutional Neural Network (CNN), but the training data for its existing capabilities are unavailable. We propose our Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities. Our method performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques and performs similarly to multitask learning that uses original task data we assume unavailable. A more surprising observation is that Learning without Forgetting may be able to replace fine-tuning with similar old and new task datasets for improved new task performance.
1,037 citations
TL;DR: This paper proposes a novel method to fuse two types of information using a generative adversarial network, termed as FusionGAN, which establishes an adversarial game between a generator and a discriminator, where the generator aims to generate a fused image with major infrared intensities together with additional visible gradients.
Abstract: Infrared images can distinguish targets from their backgrounds on the basis of difference in thermal radiation, which works well at all day/night time and under all weather conditions. By contrast, visible images can provide texture details with high spatial resolution and definition in a manner consistent with the human visual system. This paper proposes a novel method to fuse these two types of information using a generative adversarial network, termed as FusionGAN. Our method establishes an adversarial game between a generator and a discriminator, where the generator aims to generate a fused image with major infrared intensities together with additional visible gradients, and the discriminator aims to force the fused image to have more details existing in visible images. This enables that the final fused image simultaneously keeps the thermal radiation in an infrared image and the textures in a visible image. In addition, our FusionGAN is an end-to-end model, avoiding manually designing complicated activity level measurements and fusion rules as in traditional methods. Experiments on public datasets demonstrate the superiority of our strategy over state-of-the-arts, where our results look like sharpened infrared images with clear highlighted targets and abundant details. Moreover, we also generalize our FusionGAN to fuse images with different resolutions, say a low-resolution infrared image and a high-resolution visible image. Extensive results demonstrate that our strategy can generate clear and clean fused images which do not suffer from noise caused by upsampling of infrared information.
853 citations