scispace - formally typeset
Search or ask a question
Author

Jiazi Yi

Bio: Jiazi Yi is an academic researcher from École Polytechnique. The author has contributed to research in topics: Optimized Link State Routing Protocol & Routing protocol. The author has an hindex of 15, co-authored 44 publications receiving 1653 citations. Previous affiliations of Jiazi Yi include University of Nantes & École Normale Supérieure.

Papers
More filters
Journal ArticleDOI
09 Sep 2016-Sensors
TL;DR: An overview of LoRa and an in-depth analysis of its functional components are provided and some possible solutions for performance enhancements are proposed.
Abstract: LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed.

1,126 citations

Journal ArticleDOI
01 Jan 2011
TL;DR: The results reveal that MP-OLSR is suitable for mobile, large and dense networks with large traffic, and could satisfy critical multimedia applications with high on time constraints.
Abstract: Multipath routing protocols for Mobile Ad hoc NETwork (MANET) address the problem of scalability, security (confidentiality and integrity), lifetime of networks, instability of wireless transmissions, and their adaptation to applications. Our protocol, called MultiPath OLSR (MP-OLSR), is a multipath routing protocol based on OLSR [1]. The Multipath Dijkstra Algorithm is proposed to obtain multiple paths. The algorithm gains great flexibility and extensibility by employing different link metrics and cost functions. In addition, route recovery and loop detection are implemented in MP-OLSR in order to improve quality of service regarding OLSR. The backward compatibility with OLSR based on IP source routing is also studied. Simulation based on Qualnet simulator is performed in different scenarios. A testbed is also set up to validate the protocol in real world. The results reveal that MP-OLSR is suitable for mobile, large and dense networks with large traffic, and could satisfy critical multimedia applications with high on time constraints.

187 citations

11 Dec 2012
TL;DR: This document describes the Lightweight Ad hoc On-Demand - Next Generation (LOADng) distance vector routing protocol, a reactive routing protocol intended for use in Mobile Ad hoc NETworks (MANETs).

78 citations

Posted Content
TL;DR: This paper discussed a hybrid multipath routing protocol named MP-OLSR, which is based on the link state algorithm and employs periodic exchange of messages to maintain topology information of the networks.
Abstract: Mobile ad hoc networks (MANETs) consist of a collection of wireless mobile nodes which dynamically exchange data without reliance on a fixed base station or a wired backbone network, which makes routing a crucial issue for the design of a ad hoc networks. In this paper we discussed a hybrid multipath routing protocol named MP-OLSR. It is based on the link state algorithm and employs periodic exchange of messages to maintain topology information of the networks. In the mean time, it updates the routing table in an on-demand scheme and forwards the packets in multiple paths which have been determined at the source. If a link failure is detected, the algorithm recovers the route automatically. Concerning the instability of the wireless networks, the redundancy coding is used to improve the delivery ratio. The simulation in NS2 shows that the new protocol can effectively improve the performance of the networks.

54 citations

Proceedings ArticleDOI
15 Apr 2008
TL;DR: In this article, a hybrid multipath routing protocol named MP-OLSR is proposed, which is based on the link state algorithm and employs periodic exchange of messages to maintain topology information of the networks.
Abstract: Mobile ad hoc networks (MANETs) consist of a collection of wireless mobile nodes which dynamically exchange data without reliance on a fixed base station or a wired backbone network, which makes routing a crucial issue for the design of a ad hoc networks. In this paper we discussed a hybrid multipath routing protocol named MP-OLSR. It is based on the link state algorithm and employs periodic exchange of messages to maintain topology information of the networks. In the mean time, it updates the routing table in an on-demand scheme and forwards the packets in multiple paths which have been determined at the source. If a link failure is detected, the algorithm recovers the route automatically. Concerning the instability of the wireless networks, the redundancy coding is used to improve the delivery ratio. The simulation in NS2 shows that the new protocol can effectively improve the performance of the networks.

51 citations


Cited by
More filters
Journal ArticleDOI
Orestis Georgiou1, Usman Raza1
TL;DR: In this paper, the authors provide a stochastic geometry framework for modeling the performance of a single gateway LoRa network, a leading LPWA technology, and show that the coverage probability drops exponentially as the number of end-devices grows due to interfering signals using the same spreading sequence.
Abstract: Low power wide area (LPWA) networks are making spectacular progress from design, standardization, to commercialization. At this time of fast-paced adoption, it is of utmost importance to analyze how well these technologies will scale as the number of devices connected to the Internet of Things inevitably grows. In this letter, we provide a stochastic geometry framework for modeling the performance of a single gateway LoRa network, a leading LPWA technology. Our analysis formulates the unique peculiarities of LoRa, including its chirp spread-spectrum modulation technique, regulatory limitations on radio duty cycle, and use of ALOHA protocol on top, all of which are not as common in today’s commercial cellular networks. We show that the coverage probability drops exponentially as the number of end-devices grows due to interfering signals using the same spreading sequence. We conclude that this fundamental limiting factor is perhaps more significant toward LoRa scalability than for instance spectrum restrictions. Our derivations for co-spreading factor interference found in LoRa networks enables rigorous scalability analysis of such networks.

562 citations

Journal ArticleDOI
16 Nov 2018-Sensors
TL;DR: A detailed description of the technology is given, including existing security and reliability mechanisms, and a strengths, weaknesses, opportunities and threats (SWOT) analysis is presented along with the challenges that LoRa and LoRaWAN still face.
Abstract: LoRaWAN is one of the low power wide area network (LPWAN) technologies that have received significant attention by the research community in the recent years. It offers low-power, low-data rate communication over a wide range of covered area. In the past years, the number of publications regarding LoRa and LoRaWAN has grown tremendously. This paper provides an overview of research work that has been published from 2015 to September 2018 and that is accessible via Google Scholar and IEEE Explore databases. First, a detailed description of the technology is given, including existing security and reliability mechanisms. This literature overview is structured by categorizing papers according to the following topics: (i) physical layer aspects; (ii) network layer aspects; (iii) possible improvements; and (iv) extensions to the standard. Finally, a strengths, weaknesses, opportunities and threats (SWOT) analysis is presented along with the challenges that LoRa and LoRaWAN still face.

347 citations

Journal ArticleDOI
19 Jan 2020-Energies
TL;DR: The existing literature on the application of IoT in in energy systems, in general, and in the context of smart grids particularly is reviewed, and challenges of deploying IoT in the energy sector are reviewed, including privacy and security.
Abstract: Integration of renewable energy and optimization of energy use are key enablers of sustainable energy transitions and mitigating climate change. Modern technologies such the Internet of Things (IoT) offer a wide number of applications in the energy sector, i.e, in energy supply, transmission and distribution, and demand. IoT can be employed for improving energy efficiency, increasing the share of renewable energy, and reducing environmental impacts of the energy use. This paper reviews the existing literature on the application of IoT in in energy systems, in general, and in the context of smart grids particularly. Furthermore, we discuss enabling technologies of IoT, including cloud computing and different platforms for data analysis. Furthermore, we review challenges of deploying IoT in the energy sector, including privacy and security, with some solutions to these challenges such as blockchain technology. This survey provides energy policy-makers, energy economists, and managers with an overview of the role of IoT in optimization of energy systems.

331 citations

Journal ArticleDOI
TL;DR: This is the first academic study discussing LoRa mesh networking in detail and evaluating its performance via real experiments, and it is shown that in urban areas, LoRa requires dense deployment of LoRa gateways to ensure that indoor LoRa devices can successfully transfer data back to remote GWs.
Abstract: Although many techniques exist to transfer data from the widely distributed sensors that make up the Internet of Things (IoT) (e.g., using 3G/4G networks or cables), these methods are associated with prohibitively high costs, making them impractical for real-life applications. Recently, several emerging wireless technologies have been proposed to provide long-range communication for IoT sensors. Among these, LoRa has been examined for long-range performance. Although LoRa shows good performance for long-range transmission in the countryside, its radio signals can be attenuated over distance, and buildings, trees, and other radio signal sources may interfere with the signals. Our observations show that in urban areas, LoRa requires dense deployment of LoRa gateways (GWs) to ensure that indoor LoRa devices can successfully transfer data back to remote GWs. Wireless mesh networking is a solution for increasing communication range and packet delivery ratio (PDR) without the need to install additional GWs. This paper presents a LoRa mesh networking system for large-area monitoring of IoT applications. We deployed 19 LoRa mesh networking devices over an $800\,\,\text {m} \times 600$ m area on our university campus and installed a GW that collected data at 1-min intervals. The proposed LoRa mesh networking system achieved an average 88.49% PDR, whereas the star-network topology used by LoRa achieved only 58.7% under the same settings. To the best of our knowledge, this is the first academic study discussing LoRa mesh networking in detail and evaluating its performance via real experiments.

312 citations

Proceedings ArticleDOI
21 May 2017
TL;DR: Simulation results show that a LoRa network can scale well, achieving packet success rates above 95% in presence of a number of end devices in the order of 104.5% in typical urban scenario.
Abstract: Low-Power Wide Area Networks (LPWANs) are continuously gaining momentum as fundamental enablers of the Internet of Things (IoT) paradigm. These networks provide longrange coverage to end nodes, exploiting license-free frequency bands. The focus of this work is on one of the most prominent LPWAN technologies: LoRa™. We implemented a new ns-3 module to study the performance of a LoRa-based IoT network in a typical urban scenario. Simulation results show that a LoRa network can scale well, achieving packet success rates above 95% in presence of a number of end devices in the order of 104.

295 citations