scispace - formally typeset
Search or ask a question
Author

Jie Cheng

Bio: Jie Cheng is an academic researcher. The author has contributed to research in topics: Bioconversion. The author has an hindex of 1, co-authored 1 publications receiving 11 citations.
Topics: Bioconversion

Papers
More filters
Journal ArticleDOI
TL;DR: The results show that a fast, environmentally friendly and efficient production of 5-aminovalerate was established after introducing the engineered whole-cell biocatalysts, which can be applied to the biosynthesis of other valuable chemicals.
Abstract: Microorganisms can utilize biomass to produce valuable chemicals, showing sustainable, renewable and economic advantages compared with traditional chemical synthesis. As a potential five-carbon platform polymer monomer, 5-aminovalerate has been widely used in industrial fields such as clothes and disposable goods. Here we establish an efficient whole-cell catalysis for 5-aminovalerate production with ethanol pretreatment. In this study, the metabolic pathway from L-lysine to 5-aminovalerate was constructed at the cellular level by introducing L-lysine α-oxidase. The newly produced H2O2 and added ethanol both are toxic to the cells, obviously inhibiting their growth. Here, a promising strategy of whole-cell catalysis with ethanol pretreatment is proposed, which greatly improves the yield of 5-aminovalerate. Subsequently, the effects of ethanol pretreatment, substrate concentration, reaction temperature, pH value, metal ion additions and hydrogen peroxide addition on the whole-cell biocatalytic efficiency were investigated. Using 100 g/L of L-lysine hydrochloride as raw material, 50.62 g/L of 5-aminovalerate could be excellently produced via fed-batch bioconversion with the yield of 0.84 mol/mol. The results show that a fast, environmentally friendly and efficient production of 5-aminovalerate was established after introducing the engineered whole-cell biocatalysts. This strategy, combined with ethanol pretreatment, can not only greatly enhance the yield of 5-aminovalerate but also be applied to the biosynthesis of other valuable chemicals.

17 citations


Cited by
More filters
Journal ArticleDOI
Shike Liu, Yunbin Lyu, Shiqin Yu, Jie Cheng1, Jingwen Zhou 
TL;DR: In this article, a coupled catalytic strategy of TcCGT1 and different sucrose synthases was adopted to enhance the production of orientin and vitexin.
Abstract: Orientin and vitexin are flavone 8-C-glycosides that exhibit many biological characteristics. This study aimed to establish a two-enzyme-coupled catalytic strategy to enhance the biosynthesis of orientin and vitexin from apigenin and luteolin, respectively. The C-glucosyltransferase (TcCGT1) gene from Trollius chinensis was cloned and expressed in Escherichia coli BL21(DE3). The optimal activity of TcCGT1 was achieved at pH 9.0 and 37 °C. TcCGT1 was relatively stable over the pH range of 7.0-10.0 at a temperature lower than 45 °C. The coupled catalytic strategy of TcCGT1 and different sucrose synthases was adopted to enhance the production of orientin and vitexin. By optimizing the coupling reaction conditions, orientin and vitexin production successfully achieved 2324.4 and 5524.1 mg/L with a yield of 91.4 and 89.3% (mol/mol), respectively. The coupled catalytic strategy proposed in this study might serve as a promising candidate for the large-scale production of orientin and vitexin in the future.

17 citations

Journal ArticleDOI
TL;DR: In this paper, adaptive laboratory evolution was used to improve a C. glutamicum strain engineered for production of the C5-dicarboxylic acid glutarate by flux enforcement.
Abstract: The demand for biobased polymers is increasing steadily worldwide. Microbial hosts for production of their monomeric precursors such as glutarate are developed. To meet the market demand, production hosts have to be improved constantly with respect to product titers and yields, but also shortening bioprocess duration is important. In this study, adaptive laboratory evolution was used to improve a C. glutamicum strain engineered for production of the C5-dicarboxylic acid glutarate by flux enforcement. Deletion of the l-glutamic acid dehydrogenase gene gdh coupled growth to glutarate production since two transaminases in the glutarate pathway are crucial for nitrogen assimilation. The hypothesis that strains selected for faster glutarate-coupled growth by adaptive laboratory evolution show improved glutarate production was tested. A serial dilution growth experiment allowed isolating faster growing mutants with growth rates increasing from 0.10 h−1 by the parental strain to 0.17 h−1 by the fastest mutant. Indeed, the fastest growing mutant produced glutarate with a twofold higher volumetric productivity of 0.18 g L−1 h−1 than the parental strain. Genome sequencing of the evolved strain revealed candidate mutations for improved production. Reverse genetic engineering revealed that an amino acid exchange in the large subunit of l-glutamic acid-2-oxoglutarate aminotransferase was causal for accelerated glutarate production and its beneficial effect was dependent on flux enforcement due to deletion of gdh. Performance of the evolved mutant was stable at the 2 L bioreactor-scale operated in batch and fed-batch mode in a mineral salts medium and reached a titer of 22.7 g L−1, a yield of 0.23 g g−1 and a volumetric productivity of 0.35 g L−1 h−1. Reactive extraction of glutarate directly from the fermentation broth was optimized leading to yields of 58% and 99% in the reactive extraction and reactive re-extraction step, respectively. The fermentation medium was adapted according to the downstream processing results. Flux enforcement to couple growth to operation of a product biosynthesis pathway provides a basis to select strains growing and producing faster by adaptive laboratory evolution. After identifying candidate mutations by genome sequencing causal mutations can be identified by reverse genetics. As exemplified here for glutarate production by C. glutamicum, this approach allowed deducing rational metabolic engineering strategies.

14 citations

Journal ArticleDOI
Hao Peng1, Jing Guo1, Liping Lv1, Huisheng Huang1, Bing Li1 
TL;DR: In this paper, the authors review chromium resources and methods to leach out Cr, such as calcium-roasting, sodium-ROAST, acidic leaching, alkaline leaching and sub-molten technology.
Abstract: Chromium is a major strategic mineral widely used in industrial processes, yet mineral resources are decreasing, calling for advanced recycling techniques to recover chromium from ores, waste and contaminated media. Here, we review chromium resources and methods to leach out Cr, such as calcium-roasting, sodium-roasting, acidic leaching, alkaline leaching and sub-molten technology.

13 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the first description of fermentative production of l-2HG, a monomeric precursor used in electrochromic polyamides, to crosslink polyamide or to increase their biodegradability.
Abstract: l-2-hydroxyglutarate (l-2HG) is a trifunctional building block and highly attractive for the chemical and pharmaceutical industries. The natural l-lysine biosynthesis pathway of the amino acid producer Corynebacterium glutamicum was extended for the fermentative production of l-2HG. Since l-2HG is not native to the metabolism of C. glutamicum metabolic engineering of a genome-streamlined l-lysine overproducing strain was required to enable the conversion of l-lysine to l-2HG in a six-step synthetic pathway. To this end, l-lysine decarboxylase was cascaded with two transamination reactions, two NAD(P)-dependent oxidation reactions and the terminal 2-oxoglutarate-dependent glutarate hydroxylase. Of three sources for glutarate hydroxylase the metalloenzyme CsiD from Pseudomonas putida supported l-2HG production to the highest titers. Genetic experiments suggested a role of succinate exporter SucE for export of l-2HG and improving expression of its gene by chromosomal exchange of its native promoter improved l-2HG production. The availability of Fe2+ as cofactor of CsiD was identified as a major bottleneck in the conversion of glutarate to l-2HG. As consequence of strain engineering and media adaptation product titers of 34 ± 0 mM were obtained in a microcultivation system. The glucose-based process was stable in 2 L bioreactor cultivations and a l-2HG titer of 3.5 g L-1 was obtained at the higher of two tested aeration levels. Production of l-2HG from a sidestream of the starch industry as renewable substrate was demonstrated. To the best of our knowledge, this study is the first description of fermentative production of l-2HG, a monomeric precursor used in electrochromic polyamides, to cross-link polyamides or to increase their biodegradability.

12 citations

Journal ArticleDOI
TL;DR: This review provides an extensive overview of progress toward the microbial production of lactams, particularly 4C butyrolactam, 5C valerolactam and 6C caprolactAm, and their ω-amino acid precursors, as well as future perspectives for the production of these important bulk chemicals.

11 citations