scispace - formally typeset
Search or ask a question
Author

Jie Cui

Bio: Jie Cui is an academic researcher from Australian National University. The author has contributed to research in topics: Silicon & Passivation. The author has an hindex of 11, co-authored 28 publications receiving 617 citations. Previous affiliations of Jie Cui include Boston Consulting Group & University of New South Wales.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that electrodes functionalized with thin magnesium fluoride films significantly improve the performance of silicon solar cells, allowing the demonstration of a 20.1%-efficient c-Si solar cell.
Abstract: In this study, we present a novel application of thin magnesium fluoride films to form electron-selective contacts to n-type crystalline silicon (c-Si). This allows the demonstration of a 20.1%-efficient c-Si solar cell. The electron-selective contact is composed of deposited layers of amorphous silicon (∼6.5 nm), magnesium fluoride (∼1 nm), and aluminum (∼300 nm). X-ray photoelectron spectroscopy reveals a work function of 3.5 eV at the MgF2/Al interface, significantly lower than that of aluminum itself (∼4.2 eV), enabling an Ohmic contact between the aluminum electrode and n-type c-Si. The optimized contact structure exhibits a contact resistivity of ∼76 mΩ·cm(2), sufficiently low for a full-area contact to solar cells, together with a very low contact recombination current density of ∼10 fA/cm(2). We demonstrate that electrodes functionalized with thin magnesium fluoride films significantly improve the performance of silicon solar cells. The novel contacts can potentially be implemented also in organic optoelectronic devices, including photovoltaics, thin film transistors, or light emitting diodes.

173 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a highly conductive and thermally stable electrode composed of a magnesium oxide/aluminium (MgOx/Al) contact, achieving moderately low resistivity Ohmic contacts on lightly doped n-type c-Si.
Abstract: A high Schottky barrier (>0.65 eV) for electrons is typically found on lightly doped n-type crystalline (c-Si) wafers for a variety of contact metals. This behavior is commonly attributed to the Fermi-level pinning effect and has hindered the development of n-type c-Si solar cells, while its p-type counterparts have been commercialized for several decades, typically utilizing aluminium alloys in full-area, and more recently, partial-area rear contact configurations. Here the authors demonstrate a highly conductive and thermally stable electrode composed of a magnesium oxide/aluminium (MgOx/Al) contact, achieving moderately low resistivity Ohmic contacts on lightly doped n-type c-Si. The electrode, functionalized with nanoscale MgOx films, significantly enhances the performance of n-type c-Si solar cells to a power conversion efficiency of 20%, advancing n-type c-Si solar cells with full-area dopant-free rear contacts to a point of competitiveness with the standard p-type architecture. The low thermal budget of the cathode formation, its dopant-free nature, and the simplicity of the device structure enabled by the MgOx/Al contact open up new possibilities in designing and fabricating low-cost optoelectronic devices, including solar cells, thin film transistors, or light emitting diodes.

158 citations

Journal ArticleDOI
TL;DR: In this article, different approaches to suppress surface recombination and to manipulate the concentration of charge carriers by means of doping, work function and charge are discussed, as well as some of the many surface-passivating contacts that are being developed for silicon solar cells.

102 citations

Journal ArticleDOI
TL;DR: In this paper, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca), which is used as the overlying metal in the contact structure.
Abstract: Recent advances in the efficiency of crystalline silicon (c-Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n-type c-Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.

89 citations

Journal ArticleDOI
TL;DR: In this article, a thin film of thermal atomic layer deposited (ALD) titanium oxide (TiO 2 ) was applied to the front surface of a rear locally diffused p + nn + front junction solar cell, performing the dual role of surface passivation and single-layer antireflection coating on the textured p + diffusion.

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: De Wolf et al. as mentioned in this paper reviewed the fundamental physical processes governing contact formation in crystalline silicon (c-Si) and identified the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization.
Abstract: The global photovoltaic (PV) market is dominated by crystalline silicon (c-Si) based technologies with heavily doped, directly metallized contacts. Recombination of photo-generated electrons and holes at the contact regions is increasingly constraining the power conversion efficiencies of these devices as other performance-limiting energy losses are overcome. To move forward, c-Si PV technologies must implement alternative contacting approaches. Passivating contacts, which incorporate thin films within the contact structure that simultaneously supress recombination and promote charge-carrier selectivity, are a promising next step for the mainstream c-Si PV industry. In this work, we review the fundamental physical processes governing contact formation in c-Si. In doing so we identify the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization. Strategies towards the implementation of passivating contacts in industrial environments are discussed. The development of passivating contacts holds great potential for enhancing the power conversion efficiency of silicon photovoltaics. Here, De Wolf et al. review recent advances in material design and device architecture, and discuss technical challenges to industrial fabrication.

326 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the design guidelines for passivating contacts and outline their prospects, and present an overview and classification of work to date on passivating contact structures in c-Si solar cells.
Abstract: To further increase the conversion efficiency of crystalline silicon (c-Si) solar cells, it is vital to reduce the recombination losses associated with the contacts. Therefore, a contact structure that simultaneously passivates the c-Si surface while selectively extracting only one type of charge carrier (i.e., either electrons or holes) is desired. Realizing such passivating contacts in c-Si solar cells has become an important research objective, and an overview and classification of work to date on this topic is presented here. Using this overview, we discuss the design guidelines for passivating contacts and outline their prospects.

263 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the future developments in the field of c-Si solar cells based on carrier-selective passivation layers and compare combinations of the various options of carrierselective layers concerning their combined selectivities and efficiency potentials.

228 citations

Journal ArticleDOI
TL;DR: A review of the dielectric passivation coatings developed in the past two decades using a standardised methodology to characterise the metrics of surface recombination across all techniques and materials is provided in this article.
Abstract: Silicon wafer solar cells continue to be the leading photovoltaic technology, and in many places are now providing a substantial portion of electricity generation. Further adoption of this technology will require processing that minimises losses in device performance. A fundamental mechanism for efficiency loss is the recombination of photo-generated charge carriers at the unavoidable cell surfaces. Dielectric coatings have been shown to largely prevent these losses through a combination of different passivation mechanisms. This review aims to provide an overview of the dielectric passivation coatings developed in the past two decades using a standardised methodology to characterise the metrics of surface recombination across all techniques and materials. The efficacy of a large set of materials and methods has been evaluated using such metrics and a discussion on the current state and prospects for further surface passivation improvements is provided.

213 citations