Author
Jie Xu
Other affiliations: Zhejiang University, Xidian University, Cornell University ...read more
Bio: Jie Xu is an academic researcher from University of Miami. The author has contributed to research in topics: Edge computing & Mobile edge computing. The author has an hindex of 32, co-authored 204 publications receiving 3969 citations. Previous affiliations of Jie Xu include Zhejiang University & Xidian University.
Papers
More filters
01 Mar 2021
TL;DR: In this article, the authors provide a review of federated learning in the biomedical space, and summarize the general solutions to the statistical challenges, system challenges, and privacy issues in federated Learning, and point out the implications and potentials in healthcare.
Abstract: With the rapid development of computer software and hardware technologies, more and more healthcare data are becoming readily available from clinical institutions, patients, insurance companies, and pharmaceutical industries, among others. This access provides an unprecedented opportunity for data science technologies to derive data-driven insights and improve the quality of care delivery. Healthcare data, however, are usually fragmented and private making it difficult to generate robust results across populations. For example, different hospitals own the electronic health records (EHR) of different patient populations and these records are difficult to share across hospitals because of their sensitive nature. This creates a big barrier for developing effective analytical approaches that are generalizable, which need diverse, "big data." Federated learning, a mechanism of training a shared global model with a central server while keeping all the sensitive data in local institutions where the data belong, provides great promise to connect the fragmented healthcare data sources with privacy-preservation. The goal of this survey is to provide a review for federated learning technologies, particularly within the biomedical space. In particular, we summarize the general solutions to the statistical challenges, system challenges, and privacy issues in federated learning, and point out the implications and potentials in healthcare.
396 citations
TL;DR: In this article, a user-centric energy-aware mobility management (EMM) scheme is proposed to optimize the delay due to both radio access and computation under the long-term energy consumption constraint of the user.
Abstract: Merging mobile edge computing (MEC) functionality with the dense deployment of base stations (BSs) provides enormous benefits such as a real proximity, low latency access to computing resources. However, the envisioned integration creates many new challenges, among which mobility management (MM) is a critical one. Simply applying existing radio access-oriented MM schemes leads to poor performance mainly due to the co-provisioning of radio access and computing services of the MEC-enabled BSs. In this paper, we develop a novel user-centric energy-aware mobility management (EMM) scheme, in order to optimize the delay due to both radio access and computation, under the long-term energy consumption constraint of the user. Based on Lyapunov optimization and multi-armed bandit theories, EMM works in an online fashion without future system state information, and effectively handles the imperfect system state information. Theoretical analysis explicitly takes radio handover and computation migration cost into consideration and proves a bounded deviation on both the delay performance and energy consumption compared with the oracle solution with exact and complete future system information. The proposed algorithm also effectively handles the scenario in which candidate BSs randomly switch ON/OFF during the offloading process of a task. Simulations show that the proposed algorithms can achieve close-to-optimal delay performance while satisfying the user energy consumption constraint.
332 citations
16 Apr 2018
TL;DR: In this paper, the authors investigated the problem of dynamic service caching in MEC-enabled dense cellular networks and proposed an efficient online algorithm, called OREO, which jointly optimizes service caching and task offloading to address service heterogeneity, unknown system dynamics, spatial demand coupling and decentralized coordination.
Abstract: Mobile Edge Computing (MEC) pushes computing functionalities away from the centralized cloud to the network edge, thereby meeting the latency requirements of many emerging mobile applications and saving backhaul network bandwidth. Although many existing works have studied computation of-floading policies, service caching is an equally, if not more important, design topic of MEC, yet receives much less attention. Service caching refers to caching application services and their related databases/libraries in the edge server (e.g. MEC-enabled BS), thereby enabling corresponding computation tasks to be executed. Because only a small number of application services can be cached in resource-limited edge server at the same time, which services to cache has to be judiciously decided to maximize the edge computing performance. In this paper, we investigate the extremely compelling but much less studied problem of dynamic service caching in MEC-enabled dense cellular networks. We propose an efficient online algorithm, called OREO, which jointly optimizes dynamic service caching and task offloading to address a number of key challenges in MEC systems, including service heterogeneity, unknown system dynamics, spatial demand coupling and decentralized coordination. Our algorithm is developed based on Lyapunov optimization and Gibbs sampling, works online without requiring future information, and achieves provable close-to-optimal performance. Simulation results show that our algorithm can effectively reduce computation latency for end users while keeping energy consumption low.
326 citations
Posted Content•
TL;DR: The goal of this survey is to provide a review for federated learning technologies, particularly within the biomedical space, and summarize the general solutions to the statistical challenges, system challenges, and privacy issues in federation, and point out the implications and potentials in healthcare.
Abstract: With the rapid development of computer software and hardware technologies, more and more healthcare data are becoming readily available from clinical institutions, patients, insurance companies and pharmaceutical industries, among others. This access provides an unprecedented opportunity for data science technologies to derive data-driven insights and improve the quality of care delivery. Healthcare data, however, are usually fragmented and private making it difficult to generate robust results across populations. For example, different hospitals own the electronic health records (EHR) of different patient populations and these records are difficult to share across hospitals because of their sensitive nature. This creates a big barrier for developing effective analytical approaches that are generalizable, which need diverse, "big data". Federated learning, a mechanism of training a shared global model with a central server while keeping all the sensitive data in local institutions where the data belong, provides great promise to connect the fragmented healthcare data sources with privacy-preservation. The goal of this survey is to provide a review for federated learning technologies, particularly within the biomedical space. In particular, we summarize the general solutions to the statistical challenges, system challenges and privacy issues in federated learning, and point out the implications and potentials in healthcare.
317 citations
TL;DR: In this article, an efficient reinforcement learning-based resource management algorithm was proposed to minimize the long-term system cost, including both service delay and operational cost, by using a decomposition of the (offline) value iteration and (online) reinforcement learning.
Abstract: Mobile edge computing (also known as fog computing) has recently emerged to enable in-situ processing of delay-sensitive applications at the edge of mobile networks. Providing grid power supply in support of mobile edge computing, however, is costly and even infeasible (in certain rugged or under-developed areas), thus mandating on-site renewable energy as a major or even sole power supply in increasingly many scenarios. Nonetheless, the high intermittency and unpredictability of renewable energy make it very challenging to deliver a high quality of service to users in energy harvesting mobile edge computing systems. In this paper, we address the challenge of incorporating renewables into mobile edge computing and propose an efficient reinforcement learning-based resource management algorithm, which learns on-the-fly the optimal policy of dynamic workload offloading (to the centralized cloud) and edge server provisioning to minimize the long-term system cost (including both service delay and operational cost). Our online learning algorithm uses a decomposition of the (offline) value iteration and (online) reinforcement learning, thus achieving a significant improvement of learning rate and run-time performance when compared to standard reinforcement learning algorithms such as ${Q}$ -learning. We prove the convergence of the proposed algorithm and analytically show that the learned policy has a simple monotone structure amenable to practical implementation. Our simulation results validate the efficacy of our algorithm, which significantly improves the edge computing performance compared to fixed or myopic optimization schemes and conventional reinforcement learning algorithms.
282 citations
Cited by
More filters
[...]
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).
13,246 citations
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.
10,141 citations
TL;DR: It is concluded that multiple Imputation for Nonresponse in Surveys should be considered as a legitimate method for answering the question of why people do not respond to survey questions.
Abstract: 25. Multiple Imputation for Nonresponse in Surveys. By D. B. Rubin. ISBN 0 471 08705 X. Wiley, Chichester, 1987. 258 pp. £30.25.
3,216 citations
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management is provided in this paper, where a set of issues, challenges, and future research directions for MEC are discussed.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized mobile cloud computing toward mobile edge computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also discuss a set of issues, challenges, and future research directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.
2,992 citations
Posted Content•
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management and recent standardization efforts on MEC are introduced.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized Mobile Cloud Computing towards Mobile Edge Computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also present a research outlook consisting of a set of promising directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.
2,289 citations