scispace - formally typeset
Search or ask a question
Author

Jie Zong

Bio: Jie Zong is an academic researcher. The author has contributed to research in topics: Fiber laser & Laser linewidth. The author has an hindex of 8, co-authored 11 publications receiving 523 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A 64 W fiber laser at 1.9 microm with a slope efficiency of 68% with respect to the launching pump power at 800 nm was demonstrated in a one-end pump configuration using a piece of 20 cm long newly developed thulium-doped germanate glass double-cladding single-mode fiber.
Abstract: A 64 W fiber laser at 1.9 μm with a slope efficiency of 68% with respect to the launching pump power at 800 nm was demonstrated in a one-end pump configuration using a piece of 20 cm long newly developed thulium-doped germanate glass double-cladding single-mode fiber. A quantum efficiency of 1.8 was achieved. An output laser power of 104 W at 1.9 μm was demonstrated from a piece of 40 cm long fiber with a dual-end pump configuration.

186 citations

Journal ArticleDOI
TL;DR: In this paper, an all-fiber high-power single-frequency Brillouin fiber ring laser with maximum power of 100 mW at 1.55 mum was demonstrated, which was actively stabilized by using the Pound-Drever-Hall frequency-locking scheme.
Abstract: We demonstrate an all-fiber high-power single-frequency Brillouin fiber ring laser with maximum power of 100 mW at 1.55 mum, which is actively stabilized by using the Pound-Drever-Hall frequency-locking scheme. Significant reduction (~20dB) of both relative intensity noise and frequency noise was observed in the Brillouin Stokes radiation as compared with those noises of its pump source, a narrow-linewidth Er-doped fiber laser. Ultranarrow spectral linewidth of the Brillouin fiber lasers was investigated by both delayed self-heterodyne technique and heterodyne beat technique between two independent Brillouin fiber lasers

177 citations

Journal ArticleDOI
TL;DR: A unique, all-fiber, actively Q-switched laser operating in the 1 microm region is demonstrated, constructed without external coupling, utilizing fiber Bragg gratings that permit feedback at only a single polarization.
Abstract: We demonstrate a unique, all-fiber, actively Q-switched laser operating in the 1 microm region. The laser is compact, single mode, single frequency, highly polarized, and exhibits high peak power. The laser cavity is constructed without external coupling, utilizing fiber Bragg gratings that permit feedback at only a single polarization. By using a piezoelectric to press the fiber and modulate the fiber birefringence, the cavity is switched between high and low loss states, permitting Q-switching. We demonstrate this Q-switching at repetition rates up to 700 KHz.

109 citations

Proceedings ArticleDOI
19 Feb 2009
TL;DR: In this article, a single frequency fiber laser operating near 2 micron with over 50 mW output power has been demonstrated by using a short piece of newly developed single mode holmium-doped germanate glass fiber.
Abstract: A single frequency fiber laser operating near 2 micron with over 50 mW output power has been demonstrated by using a short piece of newly developed single mode holmium-doped germanate glass fiber. Laser from 2004 nm to 2083 nm was demonstrated from a short Ho-doped fiber laser cavity. A heavily thulium-doped germanate fiber was used as an in-band pump source for the holmium-doped fiber laser. The single frequency fiber laser can be thermally tuned.

39 citations

Proceedings ArticleDOI
15 Oct 2013
TL;DR: In this paper, the authors report on development of tellurite glass fibers displaying exceptionally high performance for various applications including wide band, low loss passive transport for mid IR, high efficiency, wide wavelength range and high power supercontinuum generation from visible to MIR wavelengths >4.5um, and active doping in fibers for use in laser cooling.
Abstract: Mid Infrared (MIR) fiber optics has gained a great deal of interest over the past several decades. Applications range from passive transport to fiber lasers and nonlinear applications. These fibers have found use in a wide array of fields such as sensing, military countermeasures, scientific instrumentation, medical instrumentation, and in research laboratories. As with all fiber development there is a continual urge to seek better performance characteristics including transparency over a wide wavelength range, corrosion resistance, high power handling and low loss. We report on development of tellurite glass fibers displaying exceptionally high performance for various applications including wide band, low loss passive transport for mid IR, high efficiency, wide wavelength range and high power supercontinuum generation from visible to MIR wavelengths >4.5um, and active doping in fibers for use in laser cooling. High performance in each of these areas of interest has been brought about by development of a stable glass formulation and advanced processing techniques to remove impurities ions, entrapped hydroxyl, and scatter centers which allow fibers to be made with exceptionally low losses ~0.2dB/m.

26 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review summarizes the different rare-earth cations and host materials used in mid-infrared fiber laser technology, and discusses the future applications and challenges for the field.
Abstract: Fibre lasers in the mid-infrared regime are useful for a diverse range of fields, including chemical and biomedical sensing, military applications and materials processing. This Review summarizes the different rare-earth cations and host materials used in mid-infrared fibre laser technology, and discusses the future applications and challenges for the field.

974 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal and viscosity properties of tellurite and germanate glass for fiber fabrication and compare the linear loss for near and mid-IR device engineering.

363 citations

Journal ArticleDOI
TL;DR: Godard et al. as discussed by the authors reviewed the main technologies, restricted to continuous-wave (CW) and nanosecond pulsed sources emitting in the 2-12 µm range, and discussed the pros and cons of these technologies in the context of several selected applications.

355 citations

Book ChapterDOI
01 Feb 2010
TL;DR: The wavelength range around 2 μm which is covered by the laser systems described in this chapter is part of the so called "eye safe" wavelength region which begins at about 1.4 μm as discussed by the authors.
Abstract: The wavelength range around 2 μm which is covered by the laser systems described in this chapter is part of the so called “eye safe” wavelength region which begins at about 1.4 μm. Laser systems that operate in this region offer exceptional advantages for free space applications compared to conventional systems that operate at shorter wavelengths. This gives them a great market potential for the use in LIDAR and gas sensing systems and for direct optical communication applications. The favourable absorption in water makes such lasers also very useful for medical applications. As it can be seen in figure 1, there is a strong absorption peak near 2 μm which reduces the penetration depth of this wavelength in tissue to a few hundred μm.

344 citations

Journal ArticleDOI
TL;DR: Recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.
Abstract: Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.

318 citations