scispace - formally typeset
Search or ask a question
Author

Jiguang He

Bio: Jiguang He is an academic researcher from University of Oulu. The author has contributed to research in topics: Computer science & Communication channel. The author has an hindex of 14, co-authored 62 publications receiving 687 citations. Previous affiliations of Jiguang He include City University of Hong Kong & Xiamen University.


Papers
More filters
Journal ArticleDOI
TL;DR: A two-stage channel estimation scheme for RIS-aided millimeter wave (mmWave) MIMO systems without a direct BS-MS channel is adopted, using atomic norm minimization to sequentially estimate the channel parameters, i.e., angular parameters, angle differences, and the products of propagation path gains.
Abstract: A reconfigurable intelligent surface (RIS) can shape the radio propagation environment by virtue of changing the impinging electromagnetic waves towards any desired directions, thus, breaking the general Snell’s reflection law. However, the optimal control of the RIS requires perfect channel state information (CSI) of the individual channels that link the base station (BS) and the mobile station (MS) to each other via the RIS. Thereby super-resolution channel (parameter) estimation needs to be efficiently conducted at the BS or MS with CSI feedback to the RIS controller. In this paper, we adopt a two-stage channel estimation scheme for RIS-aided millimeter wave (mmWave) MIMO systems without a direct BS-MS channel, using atomic norm minimization to sequentially estimate the channel parameters, i.e., angular parameters, angle differences, and the products of propagation path gains. We evaluate the mean square error of the parameter estimates, the RIS gains, the average effective spectrum efficiency bound, and average squared distance between the designed beamforming and combining vectors and the optimal ones. The results demonstrate that the proposed scheme achieves super-resolution estimation compared to the existing benchmark schemes, thus offering promising performance in the subsequent data transmission phase.

154 citations

Proceedings ArticleDOI
25 May 2020
TL;DR: This paper introduces the newly invented concept, large intelligent surface (LIS), to mmWave positioning systems, study the theoretical performance bounds for positioning, and evaluate the impact of the number of LIS elements and the value of phase shifters on the position estimation accuracy.
Abstract: Millimeter-wave (mmWave) multiple-input multiple-output (MIMO) system for the fifth generation (5G) cellular communications can also enable single-anchor positioning and object tracking due to its large bandwidth and inherently high angular resolution In this paper, we introduce the newly invented concept, large intelligent surface (LIS), to mmWave positioning systems, study the theoretical performance bounds (ie, Cramer-Rao lower bounds) for positioning, and evaluate the impact of the number of LIS elements and the value of phase shifters on the position estimation accuracy compared to the conventional scheme with one direct link and one non-line-of-sight path It is verified that better performance can be achieved with a LIS from the theoretical analyses and numerical study

148 citations

Journal ArticleDOI
TL;DR: Reconfigurable intelligent surfaces in 0.1-1 THz concepts at 0.5G radio for millimeter-wave (mm-wave) and beyond can provide great benefits in terms of performance, energy consumption, and cost for localization and mapping.
Abstract: 5G radio for millimeter-wave (mm-wave) and beyond5G concepts at 0.1-1 THz can exploit angle and delay measurements for localization through an increased bandwidth and large antenna arrays, but they are limited in terms of blockage caused by obstacles. Reconfigurable intelligent surfaces (RISs) are seen as a transformative technology that can control the physical propagation environment in which they are embedded by passively reflecting radio waves in preferred directions and actively sensing this environment in receive and transmit modes. While such RISs have mainly been intended for communication purposes, they can provide great benefits in terms of performance, energy consumption, and cost for localization and mapping. These benefits as well as associated challenges are the main topics of this article.

143 citations

Proceedings ArticleDOI
06 Apr 2020
TL;DR: In this article, an adaptive phase shifter design based on hierarchical codebooks and feedback from the mobile station is proposed for both accurate positioning and high data-rate transmission in RIS-aided MIMO systems.
Abstract: The concept of reconfigurable intelligent surface (RIS) has been proposed to change the propagation of electromagnetic waves, e.g., reflection, diffraction, and refraction. To accomplish this goal, the phase values of the discrete RIS units need to be optimized. In this paper, we consider RIS-aided millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems for both accurate positioning and high data-rate transmission. We propose an adaptive phase shifter design based on hierarchical codebooks and feedback from the mobile station (MS). The benefit of the scheme lies in that the RIS does not require deployment of any active sensors and baseband processing units. During the update process of phase shifters, the combining vector at the MS is sequentially refined. Simulation results show the performance improvement of the proposed algorithm over the random phase design scheme, in terms of both positioning accuracy and data rate. Moreover, the performance converges to that of the exhaustive search scheme even in the low signal-to-noise ratio regime.

100 citations

Posted Content
TL;DR: In this article, the authors proposed a Reconfigurable Intelligent Surface (RIS) based approach to control the physical propagation environment in which they are embedded by passively reflecting EM waves in preferred directions.
Abstract: 5G radio at millimeter wave (mmWave) and beyond 5G concepts at 0.1-1 THz can exploit angle and delay measurements for localization, by the virtue of increased bandwidth and large antenna arrays but are limited in terms of blockage caused by obstacles. Reconfigurable intelligent surfaces (RISs) are seen as a transformative technology that can control the physical propagation environment in which they are embedded by passively reflecting EM waves in preferred directions. Whereas such RISs have been mainly intended for communication purposes, RISs can have great benefits in terms of performance, energy consumption, and cost for localization and mapping. These benefits as well as associated challenges are the main topics of this paper.

95 citations


Cited by
More filters
01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Journal ArticleDOI
TL;DR: This paper provides a tutorial overview of IRS-aided wireless communications, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks.
Abstract: Intelligent reflecting surface (IRS) is an enabling technology to engineer the radio signal propagation in wireless networks. By smartly tuning the signal reflection via a large number of low-cost passive reflecting elements, IRS is capable of dynamically altering wireless channels to enhance the communication performance. It is thus expected that the new IRS-aided hybrid wireless network comprising both active and passive components will be highly promising to achieve a sustainable capacity growth cost-effectively in the future. Despite its great potential, IRS faces new challenges to be efficiently integrated into wireless networks, such as reflection optimization, channel estimation, and deployment from communication design perspectives. In this paper, we provide a tutorial overview of IRS-aided wireless communications to address the above issues, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks. Moreover, we highlight important directions worthy of further investigation in future work.

1,325 citations

Journal ArticleDOI
TL;DR: Reconfigurable intelligent surfaces (RISs) can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength.
Abstract: Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology for application to wireless communications. RISs can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength. Compared with other transmission technologies, e.g., phased arrays, multi-antenna transmitters, and relays, RISs require the largest number of scattering elements, but each of them needs to be backed by the fewest and least costly components. Also, no power amplifiers are usually needed. For these reasons, RISs constitute a promising software-defined architecture that can be realized at reduced cost, size, weight, and power (C-SWaP design), and are regarded as an enabling technology for realizing the emerging concept of smart radio environments (SREs). In this paper, we (i) introduce the emerging research field of RIS-empowered SREs; (ii) overview the most suitable applications of RISs in wireless networks; (iii) present an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs; (iv) provide a comprehensive overview of the current state of research; and (v) discuss the most important research issues to tackle. Owing to the interdisciplinary essence of RIS-empowered SREs, finally, we put forth the need of reconciling and reuniting C. E. Shannon’s mathematical theory of communication with G. Green’s and J. C. Maxwell’s mathematical theories of electromagnetism for appropriately modeling, analyzing, optimizing, and deploying future wireless networks empowered by RISs.

1,158 citations

Posted Content
TL;DR: The emerging research field of RIS-empowered SREs is introduced; the most suitable applications of RISs in wireless networks are overviewed; an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs is presented; and the most important research issues to tackle are discussed.
Abstract: What is a reconfigurable intelligent surface? What is a smart radio environment? What is a metasurface? How do metasurfaces work and how to model them? How to reconcile the mathematical theories of communication and electromagnetism? What are the most suitable uses and applications of reconfigurable intelligent surfaces in wireless networks? What are the most promising smart radio environments for wireless applications? What is the current state of research? What are the most important and challenging research issues to tackle? These are a few of the many questions that we investigate in this short opus, which has the threefold objective of introducing the emerging research field of smart radio environments empowered by reconfigurable intelligent surfaces, putting forth the need of reconciling and reuniting C. E. Shannon's mathematical theory of communication with G. Green's and J. C. Maxwell's mathematical theories of electromagnetism, and reporting pragmatic guidelines and recipes for employing appropriate physics-based models of metasurfaces in wireless communications.

663 citations

Book ChapterDOI
01 Jan 1993
TL;DR: For a wide class of distortion measures and discrete sources of information there exists a functionR(d) (depending on the particular distortion measure and source) which measures the equivalent rateR of the source (in bits per letter produced) whendis the allowed distortion level.
Abstract: Consider a discrete source producing a sequence of message letters from a finite alphabet. A single-letter distortion measure is given by a non-negative matrix (d ij ). The entryd ij measures the ?cost? or ?distortion? if letteriis reproduced at the receiver as letterj. The average distortion of a communications system (source-coder-noisy channel-decoder) is taken to bed= ? i.j P ij d ij whereP ij is the probability ofibeing reproduced asj. It is shown that there is a functionR(d) that measures the ?equivalent rate? of the source for a given level of distortion. For coding purposes where a leveldof distortion can be tolerated, the source acts like one with information rateR(d). Methods are given for calculatingR(d), and various properties discussed. Finally, generalizations to ergodic sources, to continuous sources, and to distortion measures involving blocks of letters are developed. In this paper a study is made of the problem of coding a discrete source of information, given afidelity criterionor ameasure of the distortionof the final recovered message at the receiving point relative to the actual transmitted message. In a particular case there might be a certain tolerable level of distortion as determined by this measure. It is desired to so encode the information that the maximum possible signaling rate is obtained without exceeding the tolerable distortion level. This work is an expansion and detailed elaboration of ideas presented earlier [1], with particular reference to the discrete case. We shall show that for a wide class of distortion measures and discrete sources of information there exists a functionR(d) (depending on the particular distortion measure and source) which measures, in a sense, the equivalent rateRof the source (in bits per letter produced) whendis the allowed distortion level. Methods will be given for evaluatingR(d) explicitly in certain simple cases and for evaluatingR(d) by a limiting process in more complex cases. The basic results are roughly that it is impossible to signal at a rate faster thanC/R(d) (source letters per second) over a memoryless channel of capacityC(bits per second) with a distortion measure less than or equal tod. On the other hand, by sufficiently long block codes it is possible to approach as closely as desired the rateC/R(d) with distortion leveld. Finally, some particular examples, using error probability per letter of message and other simple distortion measures, are worked out in detail.

658 citations