scispace - formally typeset
Search or ask a question
Author

Jihoon Kim

Bio: Jihoon Kim is an academic researcher from Samsung Electro-Mechanics. The author has contributed to research in topics: Touchscreen & Electrophoresis. The author has an hindex of 14, co-authored 51 publications receiving 915 citations. Previous affiliations of Jihoon Kim include Northwestern University & University of Texas at Austin.


Papers
More filters
Journal ArticleDOI
TL;DR: The results support the hypothesis that direct neural activation with pulsed laser light is induced by a thermal transient, resulting in direct or indirect activation of transmembrane ion channels causing action potential generation.

393 citations

Journal ArticleDOI
TL;DR: The purpose of this study was to investigate the effect of optical pulse duration on stone retropulsion during Ho:YAG (λ = 2.12 µm) laser lithotripsy.
Abstract: Background and Objectives: The purpose of this study was to investigate the effect of optical pulse duration on stone retropulsion during Ho:YAG (l ¼ 2.12 mm) laser lithotripsy. Study Design/Materials and Methods: A clinical Ho:YAG laser with pulse durations was employed to fragment calculus phantoms and to evaluate stone phantom retropulsion. At a given pulse energy, optical pulse durations were divided into two discrete conditions: short pulse (sp: 120 � 190mseconds at FWHM) and long pulse (sp: 210 � 350 mseconds at FWHM). Plaster of Paris calculus phantoms were ablated at different energy levels using optical fibers of varying diameters (273, 365, and 550 m mi n core size). The dynamics of the recoil action of a calculus phantom was monitored using a high-speed camera; the laser-induced craters were evaluated with optical coherent tomography (OCT). Bubble formation and collapse were recorded with a fast flash photography setup, and acoustic transients were measured with a hydrophone. Results: Shorter pulse durations produced more stone retropulsion than longer pulses at any given pulse energy. Regardless of pulse duration, higher pulse energy and larger fibers resulted in larger ablation volume and retropulsion (P<0.05). For shorter pulse durations, more rapid bubble expansion was observed and higher amplitudes of the collapse pressure wave were measured (P<0.05). Conclusion: Less retropulsion and equivalent fragmentation occurred when Ho:YAG pulse duration increased. Lasers Surg. Med. 38:762–772, 2006. 2006 Wiley-Liss, Inc.

106 citations

Journal ArticleDOI
TL;DR: Findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise and the changes in BDNF concentration may be partially responsible for prefrontal- dependent cognitive functioning following an acute bout of exercise.

73 citations

Journal ArticleDOI
TL;DR: In this paper, the electrophoretic mobilities of TiO2 colloids in an apolar solvent, toluene, were measured by differential phase optical coherence tomography (DP-OCT).
Abstract: Electrophoretic mobilities of TiO2 colloids in an apolar solvent, toluene, were measured by differential-phase optical coherence tomography (DP-OCT). An electrode spacing of 0.18 mm, made possible by optical coherence tomography with transparent electrodes, enables measurement of the electrophoretic mobility with small samples (20 μL) of highly turbid colloids at low applied electric potential to avoid electrohydrodynamic instability and electrochemical reactions. In the presence of Aerosol-OT reverse micelles, which stabilized the countercharges, the zeta potential was positive for hydrophilic TiO2 (13 mV at 90 mM AOT) and negative for hydrophobic TiO2. The magnitudes of the zeta potentials were very similar for these two types of TiO2 and decreased at the same rate with AOT concentration. For both hydrophilic and hydrophobic TiO2, a general mechanism is presented to describe the zeta potential in terms of preferential partitioning of cations and sulfosuccinate anions between the particle surface and rev...

64 citations

Journal ArticleDOI
TL;DR: A novel method to detect tissue‐based macrophages using a combination of superparamagnetic iron oxide (SPIO) nanoparticles and differential phase optical coherence tomography (DP‐OCT) with an external oscillating magnetic field is reported.
Abstract: Background and Objectives A novel method to detect tissue-based macrophages using a combination of superparamagnetic iron oxide (SPIO) nanoparticles and differential phase optical coherence tomography (DP-OCT) with an external oscillating magnetic field is reported. Study Design/Material and Methods Magnetic force acting on iron-laden tissue-based macrophages was varied by applying a sinusoidal current to a solenoid containing a conical iron core that substantially focused and increased magnetic flux density. Results Nanoparticle motion was detected with DP-OCT, which can detect tissue movement with nanometer resolution. Frequency response of iron-laden tissue movement was twice the modulation frequency since the magnetic force is proportional to the product of magnetic flux density and gradient. Conclusions Results of our experiments indicate that DP-OCT can be used to identify tissue-based macrophage when excited by an external focused oscillating magnetic field. Lasers Surg. Med. 39:266–272, 2007. © 2007 Wiley-Liss, Inc.

52 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal Article
TL;DR: In this article, optical coherence tomography was adapted to allow high-speed visualization of tissue in a living animal with a catheter-endoscope 1 millimeter in diameter, which was used to obtain cross-sectional images of the rabbit gastrointestinal and respiratory tracts at 10-micrometer resolution.
Abstract: Current medical imaging technologies allow visualization of tissue anatomy in the human body at resolutions ranging from 100 micrometers to 1 millimeter. These technologies are generally not sensitive enough to detect early-stage tissue abnormalities associated with diseases such as cancer and atherosclerosis, which require micrometer-scale resolution. Here, optical coherence tomography was adapted to allow high-speed visualization of tissue in a living animal with a catheter-endoscope 1 millimeter in diameter. This method, referred to as "optical biopsy," was used to obtain cross-sectional images of the rabbit gastrointestinal and respiratory tracts at 10-micrometer resolution.

1,285 citations

Journal ArticleDOI
TL;DR: This work addresses the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-the authors stratify nanommaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or nuclear properties.
Abstract: In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality’s existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality—we stratify nanomaterials on the basis of thei...

816 citations

Journal Article
TL;DR: A novel optical system for bidirectional color Doppler imaging of flow in biological tissues with micrometer-scale resolution is described and its use for in vivo imaging of blood flow in an animal model is demonstrated.
Abstract: We describe a novel optical system for bidirectional color Doppler imaging of flow in biological tissues with micrometer-scale resolution and demonstrate its use for in vivo imaging of blood flow in an animal model. Our technique, color Doppler optical coherence tomography (CDOCT), performs spatially localized optical Doppler velocimetry by use of scanning low-coherence interferometry. CDOCT is an extension of optical coherence tomography (OCT), employing coherent signal-acquisition electronics and joint time-frequency analysis algorithms to perform flow imaging simultaneous with conventional OCT imaging. Cross-sectional maps of blood flow velocity with <50-μm spatial resolution and <0.6-mm/s velocity precision were obtained through intact skin in living hamster subdermal tissue. This technology has several potential medical applications.

601 citations

Journal ArticleDOI
TL;DR: In this article, the authors parse the vast literature to examine the forefront of the field of block polymers and identify exciting themes and challenging opportunities that portend a bracing future trajectory.
Abstract: Block polymers have undergone extraordinary evolution since their inception more than 60 years ago, maturing from simple surfactants to an expansive class of macromolecules encoded with exquisite attributes. Contemporary synthetic accessibility coupled with facile characterization and rigorous theoretical advances have conspired to continuously generate fundamental insights and enabling concepts that target applications spanning chemistry, biology, physics, and engineering. Here, we parse the vast literature to examine the forefront of the field and identify exciting themes and challenging opportunities that portend a bracing future trajectory. This Perspective celebrates the visionary role played by Macromolecules in advancing our understanding of this remarkable class of materials.

542 citations