scispace - formally typeset
Search or ask a question
Author

Jihuai Wu

Bio: Jihuai Wu is an academic researcher from Huaqiao University. The author has contributed to research in topics: Dye-sensitized solar cell & Perovskite (structure). The author has an hindex of 68, co-authored 508 publications receiving 20799 citations. Previous affiliations of Jihuai Wu include Stanford University & SLAC National Accelerator Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: It may be said that the NiS/Pt/Ti counter electrode is a promising catalytic material to replace the expensive platinum in FDSSCs.
Abstract: A composite film of nickel sulfide/platinum/titanium foil (NiS/Pt/Ti) with low cost and high electrocatalytic activity was synthesized by the use of an in situ electropolymerization route and proposed as a counter electrode (CE) catalyst for flexible dye-sensitized solar cells (FDSSCs). The FDSSC with the NiS/Pt/Ti CE exhibited a comparable power conversion efficiency of 7.20% to the FDSSC with the platinum/titanium (Pt/Ti) CE showing 6.07%. The surface morphology of the NiS/Pt/Ti CE with one-dimensional (1D) structure is characterized by using the scanning electron microscopy (SEM). The NiS/Pt/Ti CE also displayed multiple electrochemical functions of excellent conductivity, great electrocatalytic ability for iodine/triiodine, and low charge transfer resistance of 2.61 ± 0.02 Ω cm2, which were characterized by using the cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization plots. The photocurrent-photovoltage (J-V) character curves were further used to calculate the theoretical optical light performance parameters of the FDSSCs. It may be said that the NiS/Pt/Ti counter electrode is a promising catalytic material to replace the expensive platinum in FDSSCs.

1,036 citations

Journal ArticleDOI

809 citations

Journal ArticleDOI
TL;DR: In this article, the first half of the magnetic undulator was used to seed the second half via a diamond-based monochromator at angstrom wavelengths, which is a technique similar to ours.
Abstract: Lasing in a hard-X-ray free-electron laser is typically seeded from noise due to the self-amplification of spontaneous emission, which limits temporal coherence and spectral characteristics. Researchers now demonstrate self-seeding using X-rays from the first half of the magnetic undulator to seed the second half via a diamond-based monochromator at angstrom wavelengths.

565 citations

Journal ArticleDOI
TL;DR: This article panoramically reviews the counter electrodes in D SSCs, which is of great significance for enhancing the development levels of DSSCs and other photoelectrochemical devices.
Abstract: Dye-sensitized solar cells (DSSCs) are regarded as prospective solar cells for the next generation of photovoltaic technologies and have become research hotspots in the PV field. The counter electrode, as a crucial component of DSSCs, collects electrons from the external circuit and catalyzes the redox reduction in the electrolyte, which has a significant influence on the photovoltaic performance, long-term stability and cost of the devices. Solar cells, dye-sensitized solar cells, as well as the structure, principle, preparation and characterization of counter electrodes are mentioned in the introduction section. The next six sections discuss the counter electrodes based on transparency and flexibility, metals and alloys, carbon materials, conductive polymers, transition metal compounds, and hybrids, respectively. The special features and performance, advantages and disadvantages, preparation, characterization, mechanisms, important events and development histories of various counter electrodes are presented. In the eighth section, the development of counter electrodes is summarized with an outlook. This article panoramically reviews the counter electrodes in DSSCs, which is of great significance for enhancing the development levels of DSSCs and other photoelectrochemical devices.

547 citations

Journal ArticleDOI
TL;DR: In this article, a dye-sensitized solar cell was assembled by using natural dyes extracted from black rice, capsicum, erythrina variegata flower, rosa xanthina, and kelp as sensitizers.

543 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
TL;DR: A review of the academic and industrial aspects of the preparation, characterization, materials properties, crystallization behavior, melt rheology, and processing of polymer/layered silicate nanocomposites is given in this article.

6,343 citations

Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations