scispace - formally typeset
Search or ask a question
Author

Jilie Kong

Bio: Jilie Kong is an academic researcher from Fudan University. The author has contributed to research in topics: Biosensor & Cyclic voltammetry. The author has an hindex of 54, co-authored 216 publications receiving 8976 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The principles that underlie the determination of protein secondary structure by FTIR spectroscopy are detailed, as well as the basic steps involved in protein sample preparation, instrument operation,FTIR spectra collection and spectra analysis in order to estimate protein secondary-structural components in aqueous solution.
Abstract: Fourier transform IR (FTIR) spectroscopy is a nondestructive technique for structural characterization of proteins and polypeptides. The IR spectral data of polymers are usually interpreted in terms of the vibrations of a structural repeat. The repeat units in proteins give rise to nine characteristic IR absorption bands (amides A, B and I-VII). Amide I bands (1,700-1,600 cm(-1)) are the most prominent and sensitive vibrational bands of the protein backbone, and they relate to protein secondary structural components. In this protocol, we have detailed the principles that underlie the determination of protein secondary structure by FTIR spectroscopy, as well as the basic steps involved in protein sample preparation, instrument operation, FTIR spectra collection and spectra analysis in order to estimate protein secondary-structural components in aqueous (both H2O and deuterium oxide (D2O)) solution using algorithms, such as second-derivative, deconvolution and curve fitting. Small amounts of high-purity (>95%) proteins at high concentrations (>3 mg ml(-1)) are needed in this protocol; typically, the procedure can be completed in 1-2 d.

757 citations

Journal ArticleDOI
TL;DR: The results reveal that the nanospheres can be easily manipulated by an external magnetic field with high separation efficiency and could thus be used as promising adsorbents for the remove organic dyes, especially, cationic dye, from polluted water.

362 citations

Journal ArticleDOI
Song Qu1, Fei Huang1, Shaoning Yu1, Gang Chen1, Jilie Kong1 
TL;DR: The Fe2O3 nanoparticles have been introduced into the multi-walled carbon nanotubes (MWCNTs) via wet chemical method and the resulting products are characterized by TEM, EDX, XRD and VSM, leading to the removal of dyes from polluted water.

324 citations

Journal ArticleDOI
TL;DR: This work shows that loop-mediated isothermal amplification (LAMP) of nucleic acid can be integrated in an eight-channel microfluidic chip for readout either by the naked eye or via absorbance measured by an optic sensor; the system is called microLAMP (microLAMP), capable of analyzing target nucleic acids quantitatively with high sensitivity and specificity.
Abstract: This work shows that loop-mediated isothermal amplification (LAMP) of nucleic acid can be integrated in an eight-channel microfluidic chip for readout either by the naked eye (as a result of the insoluble byproduct pyrophosphate generating during LAMP amplification) or via absorbance measured by an optic sensor; we call this system microLAMP (μLAMP). It is capable of analyzing target nucleic acids quantitatively with high sensitivity and specificity. The assay is straightforward in manipulation. It requires a sample volume of 0.4 μL and is complete within 1 h. The sensitivity of the assay is comparable to standard methods, where 10 fg of DNA sample could be detected under isothermal conditions (63 °C). A real time quantitative μLAMP assay using absorbance detection is possible by integration of optical fibers within the chip.

275 citations

Journal ArticleDOI
28 Feb 2007-Talanta
TL;DR: The concept of the magnetic loading of CNT nanocomposites indicates great promise for creating CNT-based biosensing devices and expands the scope of C NT-based electrochemical devices.

210 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The advent of AuNP as a sensory element provided a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.
Abstract: Detection of chemical and biological agents plays a fundamental role in biomedical, forensic and environmental sciences1–4 as well as in anti bioterrorism applications.5–7 The development of highly sensitive, cost effective, miniature sensors is therefore in high demand which requires advanced technology coupled with fundamental knowledge in chemistry, biology and material sciences.8–13 In general, sensors feature two functional components: a recognition element to provide selective/specific binding with the target analytes and a transducer component for signaling the binding event. An efficient sensor relies heavily on these two essential components for the recognition process in terms of response time, signal to noise (S/N) ratio, selectivity and limits of detection (LOD).14,15 Therefore, designing sensors with higher efficacy depends on the development of novel materials to improve both the recognition and transduction processes. Nanomaterials feature unique physicochemical properties that can be of great utility in creating new recognition and transduction processes for chemical and biological sensors15–27 as well as improving the S/N ratio by miniaturization of the sensor elements.28 Gold nanoparticles (AuNPs) possess distinct physical and chemical attributes that make them excellent scaffolds for the fabrication of novel chemical and biological sensors (Figure 1).29–36 First, AuNPs can be synthesized in a straightforward manner and can be made highly stable. Second, they possess unique optoelectronic properties. Third, they provide high surface-to-volume ratio with excellent biocompatibility using appropriate ligands.30 Fourth, these properties of AuNPs can be readily tuned varying their size, shape and the surrounding chemical environment. For example, the binding event between recognition element and the analyte can alter physicochemical properties of transducer AuNPs, such as plasmon resonance absorption, conductivity, redox behavior, etc. that in turn can generate a detectable response signal. Finally, AuNPs offer a suitable platform for multi-functionalization with a wide range of organic or biological ligands for the selective binding and detection of small molecules and biological targets.30–32,36 Each of these attributes of AuNPs has allowed researchers to develop novel sensing strategies with improved sensitivity, stability and selectivity. In the last decade of research, the advent of AuNP as a sensory element provided us a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.37 Figure 1 Physical properties of AuNPs and schematic illustration of an AuNP-based detection system. In this current review, we have highlighted the several synthetic routes and properties of AuNPs that make them excellent probes for different sensing strategies. Furthermore, we will discuss various sensing strategies and major advances in the last two decades of research utilizing AuNPs in the detection of variety of target analytes including metal ions, organic molecules, proteins, nucleic acids, and microorganisms.

3,879 citations

Journal ArticleDOI
TL;DR: When considering new sensory technologies one should look to nature for guidance, as living organisms have developed the ultimate chemical sensors.
Abstract: When considering new sensory technologies one should look to nature for guidance. Indeed, living organisms have developed the ultimate chemical sensors. Many insects can detect chemical signals with perfect specificity and incredible sensitivity. Mammalian olfaction is based on an array of less discriminating sensors and a memorized response pattern to identify a unique odor. It is important to recognize that the extraordinary sensory performance of biological systems does not originate from a single element. In actuality, their performance is derived from a completely interactive system wherein the receptor is served by analyte delivery and removal mechanisms, selectivity is derived from receptors, and sensitivity is the result of analyte-triggered biochemical cascades. Clearly, optimal artificial sensory sys-

3,464 citations

Journal ArticleDOI
TL;DR: An extensive list of various adsorbents such as natural materials, waste materials from industry, agricultural by-products, and biomass based activated carbon in the removal of various dyes has been compiled here.

2,979 citations

Journal ArticleDOI
TL;DR: This review discusses various nanomaterials that have been explored to mimic different kinds of enzymes and covers their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal.
Abstract: Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

2,951 citations