scispace - formally typeset
Search or ask a question
Author

Jim Leebens-Mack

Bio: Jim Leebens-Mack is an academic researcher from University of Georgia. The author has contributed to research in topics: Genome & Phylogenetic tree. The author has an hindex of 66, co-authored 181 publications receiving 22399 citations. Previous affiliations of Jim Leebens-Mack include University of Texas at Austin & Vanderbilt University.


Papers
More filters
Journal ArticleDOI
Gerald A. Tuskan1, Gerald A. Tuskan2, Stephen P. DiFazio3, Stephen P. DiFazio1, Stefan Jansson4, Joerg Bohlmann5, Igor V. Grigoriev6, Uffe Hellsten6, Nicholas H. Putnam6, Steven G. Ralph5, Stephane Rombauts7, Asaf Salamov6, Jacquie Schein, Lieven Sterck7, Andrea Aerts6, Rishikeshi Bhalerao4, Rishikesh P. Bhalerao8, Damien Blaudez9, Wout Boerjan7, Annick Brun9, Amy M. Brunner10, Victor Busov11, Malcolm M. Campbell12, John E. Carlson13, Michel Chalot9, Jarrod Chapman6, G.-L. Chen1, Dawn Cooper5, Pedro M. Coutinho14, Jérémy Couturier9, Sarah F. Covert15, Quentin C. B. Cronk5, R. Cunningham1, John M. Davis16, Sven Degroeve7, Annabelle Déjardin9, Claude W. dePamphilis13, John C. Detter6, Bill Dirks17, Inna Dubchak18, Inna Dubchak6, Sébastien Duplessis9, Jürgen Ehlting5, Brian E. Ellis5, Karla C Gendler19, David Goodstein6, Michael Gribskov20, Jane Grimwood21, Andrew Groover22, Lee E. Gunter1, Björn Hamberger5, Berthold Heinze, Yrjö Helariutta23, Yrjö Helariutta24, Yrjö Helariutta8, Bernard Henrissat14, D. Holligan15, Robert A. Holt, Wenyu Huang6, N. Islam-Faridi22, Steven J.M. Jones, M. Jones-Rhoades25, Richard A. Jorgensen19, Chandrashekhar P. Joshi11, Jaakko Kangasjärvi24, Jan Karlsson4, Colin T. Kelleher5, Robert Kirkpatrick, Matias Kirst16, Annegret Kohler9, Udaya C. Kalluri1, Frank W. Larimer1, Jim Leebens-Mack15, Jean-Charles Leplé9, Philip F. LoCascio1, Y. Lou6, Susan Lucas6, Francis Martin9, Barbara Montanini9, Carolyn A. Napoli19, David R. Nelson26, C D Nelson22, Kaisa Nieminen24, Ove Nilsson8, V. Pereda9, Gary F. Peter16, Ryan N. Philippe5, Gilles Pilate9, Alexander Poliakov18, J. Razumovskaya1, Paul G. Richardson6, Cécile Rinaldi9, Kermit Ritland5, Pierre Rouzé7, D. Ryaboy18, Jeremy Schmutz21, J. Schrader27, Bo Segerman4, H. Shin, Asim Siddiqui, Fredrik Sterky, Astrid Terry6, Chung-Jui Tsai11, Edward C. Uberbacher1, Per Unneberg, Jorma Vahala24, Kerr Wall13, Susan R. Wessler15, Guojun Yang15, T. Yin1, Carl J. Douglas5, Marco A. Marra, Göran Sandberg8, Y. Van de Peer7, Daniel S. Rokhsar6, Daniel S. Rokhsar17 
15 Sep 2006-Science
TL;DR: The draft genome of the black cottonwood tree, Populus trichocarpa, has been reported in this paper, with more than 45,000 putative protein-coding genes identified.
Abstract: We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.

4,025 citations

Journal ArticleDOI
05 May 2011-Nature
TL;DR: Comprehensive phylogenomic analyses of sequenced plant genomes and more than 12.6 million new expressed-sequence-tag sequences from phylogenetically pivotal lineages are used to elucidate two groups of ancient gene duplications, implicating two WGDs in ancestral lineages shortly before the diversification of extant seed plants and extant angiosperms.
Abstract: Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization has long been recognized as an important evolutionary force in animals, fungi and other organisms, especially plants. The success of angiosperms has been attributed, in part, to innovations associated with gene or whole-genome duplications, but evidence for proposed ancient genome duplications pre-dating the divergence of monocots and eudicots remains equivocal in analyses of conserved gene order. Here we use comprehensive phylogenomic analyses of sequenced plant genomes and more than 12.6 million new expressed-sequence-tag sequences from phylogenetically pivotal lineages to elucidate two groups of ancient gene duplications-one in the common ancestor of extant seed plants and the other in the common ancestor of extant angiosperms. Gene duplication events were intensely concentrated around 319 and 192 million years ago, implicating two WGDs in ancestral lineages shortly before the diversification of extant seed plants and extant angiosperms, respectively. Significantly, these ancestral WGDs resulted in the diversification of regulatory genes important to seed and flower development, suggesting that they were involved in major innovations that ultimately contributed to the rise and eventual dominance of seed plants and angiosperms.

1,763 citations

Journal ArticleDOI
TL;DR: Here, the minimum information about a genome sequence (MIGS) specification is introduced with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange.
Abstract: With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases.

1,097 citations

Journal ArticleDOI
TL;DR: Comparisons of diversification rates suggest that genome doubling may have led to a dramatic increase in species richness in several angiosperm lineages, including Poaceae, Solanaceae, Fabaceae, and Brassicaceae, but additional genomic studies are needed to pinpoint the exact phylogenetic placement of the ancient polyploidy events within these lineages.
Abstract: Polyploidy has long been recognized as a major force in angiosperm evolution. Recent genomic investigations not only indicate that polyploidy is ubiquitous among angiosperms, but also suggest several ancient genome-doubling events. These include ancient whole genome duplication (WGD) events in basal angiosperm lineages, as well as a proposed paleohexaploid event that may have occurred close to the eudicot divergence. However, there is currently no evidence for WGD in Amborella, the putative sister species to other extant angiosperms. The question is no longer "What proportion of angiosperms are polyploid?", but "How many episodes of polyploidy characterize any given lineage?" New algorithms provide promise that ancestral genomes can be reconstructed for deep divergences (e.g., it may be possible to reconstruct the ancestral eudicot or even the ancestral angiosperm genome). Comparisons of diversification rates suggest that genome doubling may have led to a dramatic increase in species richness in several angiosperm lineages, including Poaceae, Solanaceae, Fabaceae, and Brassicaceae. However, additional genomic studies are needed to pinpoint the exact phylogenetic placement of the ancient polyploidy events within these lineages and to determine when novel genes resulting from polyploidy have enabled adaptive radiations.

1,040 citations

Journal ArticleDOI
TL;DR: Strong and robust support is found for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.
Abstract: Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.

1,026 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency.
Abstract: Background: Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader’s ability to evaluate critically the quality of the results presented or to repeat the experiments. Content: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. Summary: Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results.

12,469 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: A revised and updated classification for the families of the flowering plants is provided in this paper, which includes Austrobaileyales, Canellales, Gunnerales, Crossosomatales and Celastrales.

7,299 citations

Journal ArticleDOI
TL;DR: The Carbohydrate-Active Enzyme (CAZy) database is a knowledge-based resource specialized in the enzymes that build and breakdown complex carbohydrates and glycoconjugates and has been used to improve the quality of functional predictions of a number genome projects by providing expert annotation.
Abstract: The Carbohydrate-Active Enzyme (CAZy) database is a knowledge-based resource specialized in the enzymes that build and breakdown complex carbohydrates and glycoconjugates. As of September 2008, the database describes the present knowledge on 113 glycoside hydrolase, 91 glycosyltransferase, 19 polysaccharide lyase, 15 carbohydrate esterase and 52 carbohydrate-binding module families. These families are created based on experimentally characterized proteins and are populated by sequences from public databases with significant similarity. Protein biochemical information is continuously curated based on the available literature and structural information. Over 6400 proteins have assigned EC numbers and 700 proteins have a PDB structure. The classification (i) reflects the structural features of these enzymes better than their sole substrate specificity, (ii) helps to reveal the evolutionary relationships between these enzymes and (iii) provides a convenient framework to understand mechanistic properties. This resource has been available for over 10 years to the scientific community, contributing to information dissemination and providing a transversal nomenclature to glycobiologists. More recently, this resource has been used to improve the quality of functional predictions of a number genome projects by providing expert annotation. The CAZy resource resides at URL: http://www.cazy.org/.

6,028 citations

Journal ArticleDOI
TL;DR: An objective measure of genome quality is proposed that can be used to select genomes suitable for specific gene- and genome-centric analyses of microbial communities and is shown to provide accurate estimates of genome completeness and contamination and to outperform existing approaches.
Abstract: Large-scale recovery of genomes from isolates, single cells, and metagenomic data has been made possible by advances in computational methods and substantial reductions in sequencing costs. Although this increasing breadth of draft genomes is providing key information regarding the evolutionary and functional diversity of microbial life, it has become impractical to finish all available reference genomes. Making robust biological inferences from draft genomes requires accurate estimates of their completeness and contamination. Current methods for assessing genome quality are ad hoc and generally make use of a limited number of “marker” genes conserved across all bacterial or archaeal genomes. Here we introduce CheckM, an automated method for assessing the quality of a genome using a broader set of marker genes specific to the position of a genome within a reference genome tree and information about the collocation of these genes. We demonstrate the effectiveness of CheckM using synthetic data and a wide range of isolate-, single-cell-, and metagenome-derived genomes. CheckM is shown to provide accurate estimates of genome completeness and contamination and to outperform existing approaches. Using CheckM, we identify a diverse range of errors currently impacting publicly available isolate genomes and demonstrate that genomes obtained from single cells and metagenomic data vary substantially in quality. In order to facilitate the use of draft genomes, we propose an objective measure of genome quality that can be used to select genomes suitable for specific gene- and genome-centric analyses of microbial communities.

5,788 citations