scispace - formally typeset
Search or ask a question
Author

Jim P. Zheng

Bio: Jim P. Zheng is an academic researcher from State University of New York System. The author has contributed to research in topics: Thin film & Electrode. The author has an hindex of 42, co-authored 225 publications receiving 9377 citations. Previous affiliations of Jim P. Zheng include Texas A&M University & United States Army Research Laboratory.
Topics: Thin film, Electrode, Cathode, Anode, Lithium


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the crystalline structure and the electrochemical properties of the hydrous ruthenium oxide powder have been studied as a function of the annealing temperature.
Abstract: The hydrous ruthenium oxide has been formed by a sol-gel process. The precursor was obtained by mixing aqueous solutions of RuCl{sub 3}{center_dot}xH{sub 2}O and alkalis. The hydrous ruthenium oxide powder was obtained by annealing the precursor at low temperatures. The crystalline structure and the electrochemical properties of the powder have been studied as a function of the annealing temperature. At lower annealing temperatures the powder is in an amorphous phase with a high specific capacitance. Specific capacitance as high as 720 F/g was measured for the powder formed at 150 C. when the annealing temperature exceeded 175 C, the crystalline phase was formed, and the specific capacitance dropped rapidly. The surface area of the powder and the resistivity of the pellet made from these powders have also been studied. The specific surface area and the resistivity decreased as the annealing temperature increased. A capacitor was made with electrodes comprised of hydrous ruthenium oxide and H{sub 2}SO{sub 4} electrolyte. The energy density of 96 J/g (or 26.7 Wh/kg), based on electrode material only, was measured for the cell using hydrous ruthenium oxide electrodes. It was also found that hydrous ruthenium oxide is stable in H{sub 2}SO{sub 4} electrolyte.

1,535 citations

Journal ArticleDOI
01 Jan 2011
TL;DR: The architecture described in this paper is a roadmap for a future automated and flexible electric power distribution system that is suitable for plug-and-play of distributed renewable energy and distributed energy storage devices.
Abstract: This paper presents an architecture for a future electric power distribution system that is suitable for plug-and-play of distributed renewable energy and distributed energy storage devices. Motivated by the success of the (information) Internet, the architecture described in this paper was proposed by the NSF FREEDM Systems Center, Raleigh, NC, as a roadmap for a future automated and flexible electric power distribution system. In the envisioned “Energy Internet,” a system that enables flexible energy sharing is proposed for consumers in a residential distribution system. The key technologies required to achieve such a vision are presented in this paper as a result of the research partnership of the FREEDM Systems Center.

1,237 citations

Journal ArticleDOI
TL;DR: The hydrous form of ruthenium oxide (RuO[sub 2][center dot]xH [sub 2]O) has been demonstrated to be an excellent electrode material for electrochemical capacitors as discussed by the authors.
Abstract: The hydrous form of ruthenium oxide (RuO[sub 2][center dot]xH[sub 2]O) has been demonstrated to be an excellent electrode material for electrochemical capacitors. This material, as prepared by a sol-gel process at low temperatures, is amorphous and electrically conductive. The specific capacitance is over 720 F/g. This value is at least two times higher than the highest value ever reported for such materials. The charge storage mechanism is believed to involve bulk electrochemical protonation of the oxide. This discovery opens a new avenue of research in the field of high energy density electrochemical capacitors.

694 citations

Journal ArticleDOI
TL;DR: The working principle of LICs is discussed, and the recent advances in LIC electrode materials, particularly activated carbon and lithium titanate, as well as in electrolyte development are reviewed, providing deep insights into the LIC field for continuing research and development of second-generation energy-storage technologies.
Abstract: Among the various energy-storage systems, lithium-ion capacitors (LICs) are receiving intensive attention due to their high energy density, high power density, long lifetime, and good stability. As a hybrid of lithium-ion batteries and supercapacitors, LICs are composed of a battery-type electrode and a capacitor-type electrode and can potentially combine the advantages of the high energy density of batteries and the large power density of capacitors. Here, the working principle of LICs is discussed, and the recent advances in LIC electrode materials, particularly activated carbon and lithium titanate, as well as in electrolyte development are reviewed. The charge-storage mechanisms for intercalative pseudocapacitive behavior, battery behavior, and conventional pseudocapacitive behavior are classified and compared. Finally, the prospects and challenges associated with LICs are discussed. The overall aim is to provide deep insights into the LIC field for continuing research and development of second-generation energy-storage technologies.

353 citations

Journal ArticleDOI
TL;DR: In this paper, a formula describing the dependence of energy density on specific capacitance, operating voltage, and salt concentration is given based on the optimized weight (or volume) ratio of the electrode material and the electrolyte.
Abstract: Electrochemical capacitors can be divided into two types depending on whether the salt concentration in the electrolyte changes during charging and discharging. In the first type of capacitor, such as double-layer capacitors, the salt concentration in the electrolyte reduces during the charging of the capacitor. The maximum energy density of this type of capacitor will depend not only on the specific capacitance and the operating voltage, but also on the salt concentration of the electrolyte. In this paper, a formula describing the dependence of energy density on specific capacitance, operating voltage, and salt concentration is given based on the optimized weight (or volume) ratio of the electrode material and the electrolyte. It shows that for electrochemical capacitors using nonaqueous electrolytes, the maximum energy density of the capacitor will be limited mainly by the low salt concentrations of the electrolyte. The relationship between the energy density and the mass density of the electrode is also given. The optimum mass density of the electrode can be obtained based on the value of the theoretical energy density for capacitors with different electrolytes. In the second type of capacitor, such as pseudocapacitors with metal oxide electrodes, the salt concentration in the electrolyte remains constant during charging and discharging. The maximum energy density of this type of capacitor will be limited mainly by specific capacitance and operating voltage.

259 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations

Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density.
Abstract: In this critical review, metal oxides-based materials for electrochemical supercapacitor (ES) electrodes are reviewed in detail together with a brief review of carbon materials and conducting polymers. Their advantages, disadvantages, and performance in ES electrodes are discussed through extensive analysis of the literature, and new trends in material development are also reviewed. Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density of ES (476 references).

7,642 citations