Author
Jin Hyung Lee
Other affiliations: University of California, Los Angeles, University of California, Rutgers University
Bio: Jin Hyung Lee is an academic researcher from Stanford University. The author has contributed to research in topic(s): Optogenetics & Population. The author has an hindex of 26, co-authored 71 publication(s) receiving 3633 citation(s). Previous affiliations of Jin Hyung Lee include University of California, Los Angeles & University of California.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: A scalable chemical vapour deposition method is presented to synthesize FeCo/single-graphitic-shell nanocry crystals that are soluble and stable in water solutions and point to the potential of using these nanocrystals for integrated diagnosis and therapeutic (photothermal-ablation) applications.
Abstract: Nanocrystals with advanced magnetic or optical properties have been actively pursued for potential biological applications, including integrated imaging, diagnosis and therapy. Among various magnetic nanocrystals, FeCo has superior magnetic properties, but it has yet to be explored owing to the problems of easy oxidation and potential toxicity. Previously, FeCo nanocrystals with multilayered graphitic carbon, pyrolytic carbon or inert metals have been obtained, but not in the single-shelled, discrete, chemically functionalized and water-soluble forms desired for biological applications. Here, we present a scalable chemical vapour deposition method to synthesize FeCo/single-graphitic-shell nanocrystals that are soluble and stable in water solutions. We explore the multiple functionalities of these core-shell materials by characterizing the magnetic properties of the FeCo core and near-infrared optical absorbance of the single-layered graphitic shell. The nanocrystals exhibit ultra-high saturation magnetization, r1 and r2 relaxivities and high optical absorbance in the near-infrared region. Mesenchymal stem cells are able to internalize these nanoparticles, showing high negative-contrast enhancement in magnetic-resonance imaging (MRI). Preliminary in vivo experiments achieve long-lasting positive-contrast enhancement for vascular MRI in rabbits. These results point to the potential of using these nanocrystals for integrated diagnosis and therapeutic (photothermal-ablation) applications.
767 citations
[...]
TL;DR: The ofMRI approach provides an empirical foundation for the widely-used fMRI BOLD signal, and the features of ofMRI define a potent tool that may be suitable for functional circuit analysis as well as global phenotyping of dysfunctional circuitry.
Abstract: Despite a rapidly-growing scientific and clinical brain imaging literature based on functional magnetic resonance imaging (fMRI) using blood oxygenation level-dependent (BOLD) signals, it remains controversial whether BOLD signals in a particular region can be caused by activation of local excitatory neurons. This difficult question is central to the interpretation and utility of BOLD, with major significance for fMRI studies in basic research and clinical applications. Using a novel integrated technology unifying optogenetic control of inputs with high-field fMRI signal readouts, we show here that specific stimulation of local CaMKIIalpha-expressing excitatory neurons, either in the neocortex or thalamus, elicits positive BOLD signals at the stimulus location with classical kinetics. We also show that optogenetic fMRI (of MRI) allows visualization of the causal effects of specific cell types defined not only by genetic identity and cell body location, but also by axonal projection target. Finally, we show that of MRI within the living and intact mammalian brain reveals BOLD signals in downstream targets distant from the stimulus, indicating that this approach can be used to map the global effects of controlling a local cell population. In this respect, unlike both conventional fMRI studies based on correlations and fMRI with electrical stimulation that will also directly drive afferent and nearby axons, this of MRI approach provides causal information about the global circuits recruited by defined local neuronal activity patterns. Together these findings provide an empirical foundation for the widely-used fMRI BOLD signal, and the features of of MRI define a potent tool that may be suitable for functional circuit analysis as well as global phenotyping of dysfunctional circuitry.
561 citations
[...]
TL;DR: PRMT5 is the first example of a catalytic chain for a type II protein arginine N-methyltransferase that can result in the formation of symmetric dimethylarginine residues as observed previously in myelin basic protein, Sm small nuclear ribonucleoproteins, and other polypeptides.
Abstract: We have identified a new mammalian protein arginine N-methyltransferase, PRMT5, formerly designated Janus kinase-binding protein 1, that can catalyze the formation of omega-N(G)-monomethylarginine and symmetric omega-N(G),N(G')-dimethylarginine in a variety of proteins. A hemagglutinin peptide-tagged PRMT5 complex purified from human HeLa cells catalyzes the S-adenosyl-l-[methyl-(3)H]methionine-dependent in vitro methylation of myelin basic protein. When the radiolabeled myelin basic protein was acid-hydrolyzed to free amino acids, and the products were separated by high-resolution cation exchange chromatography, we were able to detect two tritiated species. One species co-migrated with a omega-N(G)-monomethylarginine standard, and the other co-chromatographed with a symmetric omega-N(G),N(G')-dimethylarginine standard. Upon base treatment, this second species formed methylamine, a breakdown product characteristic of symmetric omega-N(G),N(G')-dimethylarginine. Further analysis of these two species by thin layer chromatography confirmed their identification as omega-N(G)-monomethylarginine and symmetric omega-N(G),N(G')-dimethylarginine. The hemagglutinin-PRMT5 complex was also able to monomethylate and symmetrically dimethylate bovine histone H2A and a glutathione S-transferase-fibrillarin (amino acids 1-148) fusion protein (glutathione S-transferase-GAR). A mutation introduced into the S-adenosyl-l-methionine-binding motif I of a myc-tagged PRMT5 construct in COS-1 cells led to a near complete loss of observed enzymatic activity. PRMT5 is the first example of a catalytic chain for a type II protein arginine N-methyltransferase that can result in the formation of symmetric dimethylarginine residues as observed previously in myelin basic protein, Sm small nuclear ribonucleoproteins, and other polypeptides.
330 citations
[...]
TL;DR: A reduced FOV single‐shot diffusion‐weighted echo‐planar imaging (ss‐DWEPI) method is proposed, in which a 2D spatially selective echo-planar RF excitation pulse and a 180° refocusing pulse reduce the FOV in the phase‐encode (PE) direction, while suppressing the signal from fat simultaneously.
Abstract: Single-shot echo-planar imaging (ss-EPI) has not been used widely for diffusion-weighted imaging (DWI) of the spinal cord, because of the magnetic field inhomogeneities around the spine, the small cross-sectional size of the spinal cord, and the increased motion in that area due to breathing, swallowing, and cerebrospinal fluid (CSF) pulsation. These result in artifacts with the usually long readout duration of the ss-EPI method. Reduced field-of-view (FOV) methods decrease the required readout duration for ss-EPI, thereby enabling its practical application to imaging of the spine. In this work, a reduced FOV single-shot diffusion-weighted echo-planar imaging (ss-DWEPI) method is proposed, in which a 2D spatially selective echo-planar RF excitation pulse and a 180 degrees refocusing pulse reduce the FOV in the phase-encode (PE) direction, while suppressing the signal from fat simultaneously. With this method, multi slice images with higher in-plane resolutions (0.94 x 0.94 mm(2) for sagittal and 0.62 x 0.62 mm(2) for axial images) are achieved at 1.5 T, without the need for a longer readout.
210 citations
[...]
TL;DR: To develop a super‐resolution technique using convolutional neural networks for generating thin‐slice knee MR images from thicker input slices, and compare this method with alternative through‐plane interpolation methods.
Abstract: PURPOSE To develop a super-resolution technique using convolutional neural networks for generating thin-slice knee MR images from thicker input slices, and compare this method with alternative through-plane interpolation methods. METHODS We implemented a 3D convolutional neural network entitled DeepResolve to learn residual-based transformations between high-resolution thin-slice images and lower-resolution thick-slice images at the same center locations. DeepResolve was trained using 124 double echo in steady-state (DESS) data sets with 0.7-mm slice thickness and tested on 17 patients. Ground-truth images were compared with DeepResolve, clinically used tricubic interpolation, and Fourier interpolation methods, along with state-of-the-art single-image sparse-coding super-resolution. Comparisons were performed using structural similarity, peak SNR, and RMS error image quality metrics for a multitude of thin-slice downsampling factors. Two musculoskeletal radiologists ranked the 3 data sets and reviewed the diagnostic quality of the DeepResolve, tricubic interpolation, and ground-truth images for sharpness, contrast, artifacts, SNR, and overall diagnostic quality. Mann-Whitney U tests evaluated differences among the quantitative image metrics, reader scores, and rankings. Cohen's Kappa (κ) evaluated interreader reliability. RESULTS DeepResolve had significantly better structural similarity, peak SNR, and RMS error than tricubic interpolation, Fourier interpolation, and sparse-coding super-resolution for all downsampling factors (p < .05, except 4 × and 8 × sparse-coding super-resolution downsampling factors). In the reader study, DeepResolve significantly outperformed (p < .01) tricubic interpolation in all image quality categories and overall image ranking. Both readers had substantial scoring agreement (κ = 0.73). CONCLUSION DeepResolve was capable of resolving high-resolution thin-slice knee MRI from lower-resolution thicker slices, achieving superior quantitative and qualitative diagnostic performance to both conventionally used and state-of-the-art methods.
173 citations
Cited by
More filters
[...]
TL;DR: In this paper, the authors proposed a passive targeting mechanism, active targeting strategies using ligands or antibodies directed against selected tumor targets amplify the specificity of these therapeutic nanoparticles, enabling them to carry their loaded active drugs to cancer cells by selectively using the unique pathophysiology of tumors.
Abstract: Cancer nanotherapeutics are rapidly progressing and are being implemented to solve several limitations of conventional drug delivery systems such as nonspecific biodistribution and targeting, lack of water solubility, poor oral bioavailability, and low therapeutic indices. To improve the biodistribution of cancer drugs, nanoparticles have been designed for optimal size and surface characteristics to increase their circulation time in the bloodstream. They are also able to carry their loaded active drugs to cancer cells by selectively using the unique pathophysiology of tumors, such as their enhanced permeability and retention effect and the tumor microenvironment. In addition to this passive targeting mechanism, active targeting strategies using ligands or antibodies directed against selected tumor targets amplify the specificity of these therapeutic nanoparticles. Drug resistance, another obstacle that impedes the efficacy of both molecularly targeted and conventional chemotherapeutic agents, might also be overcome, or at least reduced, using nanoparticles. Nanoparticles have the ability to accumulate in cells without being recognized by P-glycoprotein, one of the main mediators of multidrug resistance, resulting in the increased intracellular concentration of drugs. Multifunctional and multiplex nanoparticles are now being actively investigated and are on the horizon as the next generation of nanoparticles, facilitating personalized and tailored cancer treatment.
2,328 citations
Journal Article•
[...]
TL;DR: Multifunctional and multiplex nanoparticles are now being actively investigated and are on the horizon as the next generation of nanoparticles, facilitating personalized and tailored cancer treatment.
2,217 citations
[...]
TL;DR: A background on applications of MNPs as MR imaging contrast agents and as carriers for drug delivery and an overview of the recent developments in this area of research are provided.
Abstract: Magnetic nanoparticles (MNPs) possess unique magnetic properties and the ability to function at the cellular and molecular level of biological interactions making them an attractive platform as contrast agents for magnetic resonance imaging (MRI) and as carriers for drug delivery. Recent advances in nanotechnology have improved the ability to specifically tailor the features and properties of MNPs for these biomedical applications. To better address specific clinical needs, MNPs with higher magnetic moments, non-fouling surfaces, and increased functionalities are now being developed for applications in the detection, diagnosis, and treatment of malignant tumors, cardiovascular disease, and neurological disease. Through the incorporation of highly specific targeting agents and other functional ligands, such as fluorophores and permeation enhancers, the applicability and efficacy of these MNPs have greatly increased. This review provides a background on applications of MNPs as MR imaging contrast agents and as carriers for drug delivery and an overview of the recent developments in this area of research.
2,099 citations
[...]
TL;DR: The authors emphasize on an intuitive understanding of CS by describing the CS reconstruction as a process of interference cancellation, and there is also an emphasis on the understanding of the driving factors in applications.
Abstract: This article reviews the requirements for successful compressed sensing (CS), describes their natural fit to MRI, and gives examples of four interesting applications of CS in MRI. The authors emphasize on an intuitive understanding of CS by describing the CS reconstruction as a process of interference cancellation. There is also an emphasis on the understanding of the driving factors in applications, including limitations imposed by MRI hardware, by the characteristics of different types of images, and by clinical concerns.
1,813 citations
[...]
TL;DR: This work aims to demonstrate the efforts towards in-situ applicability of EMMARM, which aims to provide real-time information about the “building blocks” of EMT and its role in cancer progression.
Abstract: Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599-7295, USA; Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
1,530 citations