scispace - formally typeset
Search or ask a question
Author

Jin-Ook Baeg

Bio: Jin-Ook Baeg is an academic researcher. The author has contributed to research in topics: Photocatalysis & Solar fuel. The author has an hindex of 29, co-authored 81 publications receiving 2844 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a chemically stable cubic spinel nanostructured CdIn2S4 prepared by a facile hydrothermal method is reported as a visible-light driven photocatalyst.
Abstract: Nanostructured photocatalysts with high activity are sought for solar production of hydrogen. Spinel semiconductors with different nanostructures and morphologies have immense importance for photocatalytic and other potential applications. Here, a chemically stable cubic spinel nanostructured CdIn2S4 prepared by a facile hydrothermal method is reported as a visible-light driven photocatalyst. A pretty, marigold-like morphology is observed in aqueous-mediated CdIn2S4, whereas nanotubes of good crystallinity, 25 nm in diameter, are obtained in methanol-mediated CdIn2S4. The aqueous- and methanol-mediated CdIn2S4 products show excellent photocatalytic activity compared to other organic mediated samples, and this is attributed to their high degree of crystallinity. The CdIn2S4 photocatalyst gives quantum yields of 16.8 % (marigold-like morphology) and 17.1 % (nanotubes) at 500 nm, respectively, for the H2 evolution reaction. The details of the characteristics of the photocatalyst, such as crystal and band structure, are reported. Considering the importance of hydrogen energy, CdIn2S4 will be an excellent candidate as a catalyst for “photohydrogen” production under visible light. Being a nanostructured chalcogenide semiconductor, CdIn2S4 will have other potential prospective applications, such as in solar cells, light-emitting diodes, and optoelectronic devices.

330 citations

Journal ArticleDOI
TL;DR: The synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore is reported, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photoc atalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2).
Abstract: The photocatalyst–enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO2. The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO2.

313 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the synthesis of self-assembled aligned hexagonal prismatic Cu doped ZnO nanoparticles in aqueous and organic medium, where the average particle size was found to be in the range of 40-85nm.

197 citations

Journal ArticleDOI
TL;DR: The successful development of a photocatalyst/biocatalyst integrated system that carries out selective methanol production from CO2 is reported herein and represents a new benchmark for carrying out highly selective meethanol formation from CO3 in an environmentally benign manner.
Abstract: The successful development of a photocatalyst/biocatalyst integrated system that carries out selective methanol production from CO2 is reported herein. The fine-tuned system was derived from a judicious combination of graphene-based visible light active photocatalyst (CCG-IP) and sequentially coupled enzymes. The covalent attachment of isatin-porphyrin (IP) chromophore to chemically converted graphene (CCG) afforded newly developed CCG-IP photocatalyst for this research endeavor. The current work represents a new benchmark for carrying out highly selective methanol formation from CO2 in an environmentally benign manner.

181 citations

Journal ArticleDOI
TL;DR: In this paper, high-dispersed nanometer-sized α-Fe2O3 and γ-FeO3 (maghemite) iron oxide particles were synthesized by the combustion method.
Abstract: Highly dispersed nanometer-sized α-Fe2O3 (hematite) and γ-Fe2O3 (maghemite) iron oxide particles were synthesized by the combustion method. Ferric nitrate was used as a precursor. X-ray diffractometer study revealed the phase purity of α- and γ-Fe2O3. Both the products were characterized using field emission scanning electron microscope and transmission electron microscope for particle size and morphology. Necked structure particle morphology was observed for the first time in both the iron oxides. The particle size was observed in the range of 25–55 nm. Photodecomposition of H2S for hydrogen generation was performed using α- and γ-Fe2O3. Good photocatalytic activity was obtained using α- and γ-Fe2O3 as photocatalysts under visible light irradiation.

133 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the COF field is targeted, providing a historic overview of the chemistry, the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, and scrutinize the development and potential of various functions through elucidating structure-function correlations.
Abstract: Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with permanent porosity and highly ordered structures. Unlike other polymers, a significant feature of COFs is that they are structurally predesignable, synthetically controllable, and functionally manageable. In principle, the topological design diagram offers geometric guidance for the structural tiling of extended porous polygons, and the polycondensation reactions provide synthetic ways to construct the predesigned primary and high-order structures. Progress over the past decade in the chemistry of these two aspects undoubtedly established the base of the COF field. By virtue of the availability of organic units and the diversity of topologies and linkages, COFs have emerged as a new field of organic materials that offer a powerful molecular platform for complex structural design and tailor-made functional development. Here we target a comprehensive review of the COF field, provide a historic overview of the chemistry of the COF field, survey the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, scrutinize the development and potential of various functions through elucidating structure-function correlations based on interactions with photons, electrons, holes, spins, ions, and molecules, discuss the key fundamental and challenging issues that need to be addressed, and predict the future directions from chemistry, physics, and materials perspectives.

1,447 citations

Journal ArticleDOI
TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Abstract: Photoreduction of CO2 into sustainable and green solar fuels is generally believed to be an appealing solution to simultaneously overcome both environmental problems and energy crisis. The low selectivity of challenging multi-electron CO2 photoreduction reactions makes it one of the holy grails in heterogeneous photocatalysis. This Review highlights the important roles of cocatalysts in selective photocatalytic CO2 reduction into solar fuels using semiconductor catalysts. A special emphasis in this review is placed on the key role, design considerations and modification strategies of cocatalysts for CO2 photoreduction. Various cocatalysts, such as the biomimetic, metal-based, metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area. This Review provides useful information for the design of highly selective cocatalysts for photo(electro)reduction and electroreduction of CO2 and complements the existing reviews on various semiconductor photocatalysts.

1,365 citations