scispace - formally typeset
Search or ask a question
Author

Jin-Song von Storch

Other affiliations: University of Hamburg
Bio: Jin-Song von Storch is an academic researcher from Max Planck Society. The author has contributed to research in topics: Wind stress & Ocean current. The author has an hindex of 24, co-authored 73 publications receiving 3381 citations. Previous affiliations of Jin-Song von Storch include University of Hamburg.


Papers
More filters
BookDOI
01 Jan 2001
TL;DR: The hierarchy of climate models The emergence of randomness - chaos, averaging, limit theorems tools and methods - SDE, dynamical systems, SPDE, multiscale techniques reduced stochastic models and particular techniques as mentioned in this paper.
Abstract: The hierarchy of climate models The emergence of randomness - chaos, averaging, limit theorems tools and methods - SDE, dynamical systems, SPDE, multiscale techniques reduced stochastic models and particular techniques.

887 citations

Journal ArticleDOI
TL;DR: The High-ResMIP (High-resolution Model Intercomparison Project) as mentioned in this paper is a multi-model approach to the systematic investigation of the impact of horizontal resolution on the simulated mean climate and its variability.
Abstract: . Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950–2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.

608 citations

Journal ArticleDOI
TL;DR: The model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two‐layer model.
Abstract: A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI‐ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low‐level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two‐layer model.

542 citations

Journal ArticleDOI
TL;DR: In this article, the authors make a case that the use of stochastic representation of unresolved processes in the atmosphere, oceans, land surface, and cryosphere of comprehensive weather and climate models gives rise to more reliable probabilistic forecasts of weather, and reduces systematic model bias.
Abstract: The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans, land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stri...

252 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented an estimate of the oceanic Lorenz energy cycle derived from a simulation forced by 6-hourly fluxes obtained from NCEP-NCAR reanalysis.
Abstract: This paper presents an estimate of the oceanic Lorenz energy cycle derived from a simulation forced by 6-hourly fluxes obtained from NCEP–NCAR reanalysis-1. The total rate of energy generation amounts to 6.6 TW, of which 1.9 TW is generated by the time-mean winds and 2.2 TW by the time-varying winds. The dissipation of kinetic energy amounts to 4.4 TW, of which 3 TW originate from the dissipation of eddy kinetic energy. The energy exchange between reservoirs is dominated by the baroclinic pathway and the pathway that distributes the energy generated by the time-mean winds. The former converts 0.7 to 0.8 TW mean available potential energy to eddy available potential energy and finally to eddy kinetic energy, whereas the latter converts 0.5 TW mean kinetic energy to mean available potential energy.This energy cycle differs from the atmospheric one in two aspects. First, the generation of the mean kinetic and mean available potential energy is each, to a first approximation, balanced by the dissipati...

221 citations


Cited by
More filters
01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: In this article, a method is introduced that is able to extract dynamic information from flow fields that are either generated by a (direct) numerical simulation or visualized/measured in a physical experiment.
Abstract: The description of coherent features of fluid flow is essential to our understanding of fluid-dynamical and transport processes. A method is introduced that is able to extract dynamic information from flow fields that are either generated by a (direct) numerical simulation or visualized/measured in a physical experiment. The extracted dynamic modes, which can be interpreted as a generalization of global stability modes, can be used to describe the underlying physical mechanisms captured in the data sequence or to project large-scale problems onto a dynamical system of significantly fewer degrees of freedom. The concentration on subdomains of the flow field where relevant dynamics is expected allows the dissection of a complex flow into regions of localized instability phenomena and further illustrates the flexibility of the method, as does the description of the dynamics within a spatial framework. Demonstrations of the method are presented consisting of a plane channel flow, flow over a two-dimensional cavity, wake flow behind a flexible membrane and a jet passing between two cylinders.

4,150 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the structure and seasonality of the Southern Hemisphere (SH) annular mode and the Northern Hemisphere (NH) mode, referred to as the Arctic Oscillation (AO), based on data from the National Centers for Environmental Prediction and National Center for Atmospheric Research reanalysis and supplementary datasets.
Abstract: The leading modes of variability of the extratropical circulation in both hemispheres are characterized by deep, zonally symmetric or ‘‘annular’’ structures, with geopotential height perturbations of opposing signs in the polar cap region and in the surrounding zonal ring centered near 458 latitude. The structure and dynamics of the Southern Hemisphere (SH) annular mode have been extensively documented, whereas the existence of a Northern Hemisphere (NH) mode, herein referred to as the Arctic Oscillation (AO), has only recently been recognized. Like the SH mode, the AO can be defined as the leading empirical orthogonal function of the sea level pressure field or of the zonally symmetric geopotential height or zonal wind fields. In this paper the structure and seasonality of the NH and SH modes are compared based on data from the National Centers for Environmental Prediction‐National Center for Atmospheric Research reanalysis and supplementary datasets. The structures of the NH and SH annular modes are shown to be remarkably similar, not only in the zonally averaged geopotential height and zonal wind fields, but in the mean meridional circulations as well. Both exist year-round in the troposphere, but they amplify with height upward into the stratosphere during those seasons in which the strength of the zonal flow is conducive to strong planetary wave‐mean flow interaction: midwinter in the NH and late spring in the SH. During these ‘‘active seasons,’’ the annular modes modulate the strength of the Lagrangian mean circulation in the lower stratosphere, total column ozone and tropopause height over mid- and high latitudes, and the strength of the trade winds of their respective hemispheres. The NH mode also contains an embedded planetary wave signature with expressions in surface air temperature, precipitation, total column ozone, and tropopause height. It is argued that the horizontal temperature advection by the perturbed zonal-mean zonal wind field in the lower troposphere is instrumental in forcing this pattern. A companion paper documents the striking resemblance between the structure of the annular modes and observed climate trends over the past few decades.

3,278 citations