scispace - formally typeset
Search or ask a question
Author

Jin Xiong

Bio: Jin Xiong is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Genome & Embryonic stem cell. The author has an hindex of 8, co-authored 21 publications receiving 431 citations.

Papers
More filters
Posted ContentDOI
29 Feb 2020-medRxiv
TL;DR: A method to identify SARS-CoV-2 (COVID-19) virus RNA from purified RNA or cell lysis using loop-mediated isothermal amplification (LAMP) using a visual, colorimetric detection is reported.
Abstract: The ability to detect an infectious agent in a widespread epidemic is crucial to the success of quarantine efforts in addition to sensitive and accurate screening of potential cases of infection from patients in a clinical setting. Enabling testing outside of sophisticated laboratories broadens the scope of control and surveillance efforts, but also requires robust and simple methods that can be used without expensive instrumentation. Here we report a method to identify SARS-CoV-2 (COVID-19) virus RNA from purified RNA or cell lysis using loop-mediated isothermal amplification (LAMP) using a visual, colorimetric detection. This test was additionally verified using RNA samples purified from respiratory swabs collected from COVID-19 patients in Wuhan, China with equivalent performance to a commercial RT-qPCR test while requiring only heating and visual inspection. This simple and sensitive method provides an opportunity to facilitate virus detection in the field without a requirement for complex diagnostic infrastructure.

345 citations

Journal ArticleDOI
TL;DR: It is found that all three tested compounds inhibited viral replication in Vero-E6 cells at noncytotoxic concentrations and combination of gemcitabine with oxysophoridine had an additive antiviral effect against SARS-CoV-2.
Abstract: The emerging SARS-CoV-2 infection associated with the outbreak of viral pneumonia in China is ongoing worldwide. There are no approved antiviral therapies to treat this viral disease. Here we examined the antiviral abilities of three broad-spectrum antiviral compounds gemcitabine, lycorine and oxysophoridine against SARS-CoV-2 in cell culture. We found that all three tested compounds inhibited viral replication in Vero-E6 cells at noncytotoxic concentrations. The antiviral effect of gemcitabine was suppressed efficiently by the cytidine nucleosides. Additionally, combination of gemcitabine with oxysophoridine had an additive antiviral effect against SARS-CoV-2. Our results demonstrate that broad-spectrum antiviral compounds may have a priority for the screening of antiviral compounds against newly emerging viruses to control viral infection.

85 citations

Journal ArticleDOI
TL;DR: Human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19, and early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism.
Abstract: The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.

64 citations

Journal ArticleDOI
TL;DR: Antiviral tests using native SARS-CoV-2 virus in Vero E6 cells confirmed that 7 drugs significantly inhibited SARS2 replication, reducing supernatant viral RNA load with a promising level of activity.
Abstract: To discover effective drugs for COVID-19 treatment amongst already clinically approved drugs, we developed a high throughput screening assay for SARS-CoV-2 virus entry inhibitors using SARS2-S pseudotyped virus. An approved drug library of 1800 small molecular drugs was screened for SARS2 entry inhibitors and 15 active drugs were identified as specific SARS2-S pseudovirus entry inhibitors. Antiviral tests using native SARS-CoV-2 virus in Vero E6 cells confirmed that 7 of these drugs (clemastine, amiodarone, trimeprazine, bosutinib, toremifene, flupenthixol, and azelastine) significantly inhibited SARS2 replication, reducing supernatant viral RNA load with a promising level of activity. Three of the drugs were classified as histamine receptor antagonists with clemastine showing the strongest anti-SARS2 activity (EC50 = 0.95 ± 0.83 µM). Our work suggests that these 7 drugs could enter into further in vivo studies and clinical investigations for COVID-19 treatment.

52 citations

Journal ArticleDOI
TL;DR: Six biflavones, named AMF1-5 and HIF, can potently inhibit cathepsin B and cathepsypsin K, and their binding patterns and interaction modes with cathePSin B made them more specific to cathemsin B endopeptidase.

32 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal Article
TL;DR: FastTree as mentioned in this paper uses sequence profiles of internal nodes in the tree to implement neighbor-joining and uses heuristics to quickly identify candidate joins, then uses nearest-neighbor interchanges to reduce the length of the tree.
Abstract: Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

2,436 citations

Journal ArticleDOI
30 Mar 2020-ACS Nano
TL;DR: Diagnostic and surveillance technologies for SARS-CoV-2 and their performance characteristics are described and point-of-care diagnostics that are on the horizon are described to encourage academics to advance their technologies beyond conception.
Abstract: COVID-19 has spread globally since its discovery in Hubei province, China in December 2019. A combination of computed tomography imaging, whole genome sequencing, and electron microscopy were initially used to screen and identify SARS-CoV-2, the viral etiology of COVID-19. The aim of this review article is to inform the audience of diagnostic and surveillance technologies for SARS-CoV-2 and their performance characteristics. We describe point-of-care diagnostics that are on the horizon and encourage academics to advance their technologies beyond conception. Developing plug-and-play diagnostics to manage the SARS-CoV-2 outbreak would be useful in preventing future epidemics.

1,335 citations

Journal ArticleDOI
TL;DR: Assessment of the diagnostic accuracy of point‐of‐care antigen and molecular‐based tests to determine if a person presenting in the community or in primary or secondary care has current SARS‐CoV‐2 infection found no studies at low risk of bias for all quality domains and concerns about applicability of results across all studies.
Abstract: Background Accurate rapid diagnostic tests for SARS‐CoV‐2 infection could contribute to clinical and public health strategies to manage the COVID‐19 pandemic. Point‐of‐care antigen and molecular tests to detect current infection could increase access to testing and early confirmation of cases, and expediate clinical and public health management decisions that may reduce transmission. Objectives To assess the diagnostic accuracy of point‐of‐care antigen and molecular‐based tests for diagnosis of SARS‐CoV‐2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Search methods Electronic searches of the Cochrane COVID‐19 Study Register and the COVID‐19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 30 Sept 2020. We checked repositories of COVID‐19 publications and included independent evaluations from national reference laboratories, the Foundation for Innovative New Diagnostics and the Diagnostics Global Health website to 16 Nov 2020. We did not apply language restrictions. Selection criteria We included studies of people with either suspected SARS‐CoV‐2 infection, known SARS‐CoV‐2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen or molecular tests suitable for a point‐of‐care setting (minimal equipment, sample preparation, and biosafety requirements, with results within two hours of sample collection). We included all reference standards that define the presence or absence of SARS‐CoV‐2 (including reverse transcription polymerase chain reaction (RT‐PCR) tests and established diagnostic criteria). Data collection and analysis Studies were screened independently in duplicate with disagreements resolved by discussion with a third author. Study characteristics were extracted by one author and checked by a second; extraction of study results and assessments of risk of bias and applicability (made using the QUADAS‐2 tool) were undertaken independently in duplicate. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and pooled data using the bivariate model separately for antigen and molecular‐based tests. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. Main results Seventy‐eight study cohorts were included (described in 64 study reports, including 20 pre‐prints), reporting results for 24,087 samples (7,415 with confirmed SARS‐CoV‐2). Studies were mainly from Europe (n = 39) or North America (n = 20), and evaluated 16 antigen and five molecular assays. We considered risk of bias to be high in 29 (37%) studies because of participant selection; in 66 (85%) because of weaknesses in the reference standard for absence of infection; and in 29 (37%) for participant flow and timing. Studies of antigen tests were of a higher methodological quality compared to studies of molecular tests, particularly regarding the risk of bias for participant selection and the index test. Characteristics of participants in 35 (45%) studies differed from those in whom the test was intended to be used and the delivery of the index test in 39 (50%) studies differed from the way in which the test was intended to be used. Nearly all studies (97%) defined the presence or absence of SARS‐CoV‐2 based on a single RT‐PCR result, and none included participants meeting case definitions for probable COVID‐19. Antigen tests Forty‐eight studies reported 58 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies. There were differences between symptomatic (72.0%, 95% CI 63.7% to 79.0%; 37 evaluations; 15530 samples, 4410 cases) and asymptomatic participants (58.1%, 95% CI 40.2% to 74.1%; 12 evaluations; 1581 samples, 295 cases). Average sensitivity was higher in the first week after symptom onset (78.3%, 95% CI 71.1% to 84.1%; 26 evaluations; 5769 samples, 2320 cases) than in the second week of symptoms (51.0%, 95% CI 40.8% to 61.0%; 22 evaluations; 935 samples, 692 cases). Sensitivity was high in those with cycle threshold (Ct) values on PCR ≤25 (94.5%, 95% CI 91.0% to 96.7%; 36 evaluations; 2613 cases) compared to those with Ct values >25 (40.7%, 95% CI 31.8% to 50.3%; 36 evaluations; 2632 cases). Sensitivity varied between brands. Using data from instructions for use (IFU) compliant evaluations in symptomatic participants, summary sensitivities ranged from 34.1% (95% CI 29.7% to 38.8%; Coris Bioconcept) to 88.1% (95% CI 84.2% to 91.1%; SD Biosensor STANDARD Q). Average specificities were high in symptomatic and asymptomatic participants, and for most brands (overall summary specificity 99.6%, 95% CI 99.0% to 99.8%). At 5% prevalence using data for the most sensitive assays in symptomatic people (SD Biosensor STANDARD Q and Abbott Panbio), positive predictive values (PPVs) of 84% to 90% mean that between 1 in 10 and 1 in 6 positive results will be a false positive, and between 1 in 4 and 1 in 8 cases will be missed. At 0.5% prevalence applying the same tests in asymptomatic people would result in PPVs of 11% to 28% meaning that between 7 in 10 and 9 in 10 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. No studies assessed the accuracy of repeated lateral flow testing or self‐testing. Rapid molecular assays Thirty studies reported 33 evaluations of five different rapid molecular tests. Sensitivities varied according to test brand. Most of the data relate to the ID NOW and Xpert Xpress assays. Using data from evaluations following the manufacturer’s instructions for use, the average sensitivity of ID NOW was 73.0% (95% CI 66.8% to 78.4%) and average specificity 99.7% (95% CI 98.7% to 99.9%; 4 evaluations; 812 samples, 222 cases). For Xpert Xpress, the average sensitivity was 100% (95% CI 88.1% to 100%) and average specificity 97.2% (95% CI 89.4% to 99.3%; 2 evaluations; 100 samples, 29 cases). Insufficient data were available to investigate the effect of symptom status or time after symptom onset. Authors' conclusions Antigen tests vary in sensitivity. In people with signs and symptoms of COVID‐19, sensitivities are highest in the first week of illness when viral loads are higher. The assays shown to meet appropriate criteria, such as WHO's priority target product profiles for COVID‐19 diagnostics (‘acceptable’ sensitivity ≥ 80% and specificity ≥ 97%), can be considered as a replacement for laboratory‐based RT‐PCR when immediate decisions about patient care must be made, or where RT‐PCR cannot be delivered in a timely manner. Positive predictive values suggest that confirmatory testing of those with positive results may be considered in low prevalence settings. Due to the variable sensitivity of antigen tests, people who test negative may still be infected. Evidence for testing in asymptomatic cohorts was limited. Test accuracy studies cannot adequately assess the ability of antigen tests to differentiate those who are infectious and require isolation from those who pose no risk, as there is no reference standard for infectiousness. A small number of molecular tests showed high accuracy and may be suitable alternatives to RT‐PCR. However, further evaluations of the tests in settings as they are intended to be used are required to fully establish performance in practice. Several important studies in asymptomatic individuals have been reported since the close of our search and will be incorporated at the next update of this review. Comparative studies of antigen tests in their intended use settings and according to test operator (including self‐testing) are required.

941 citations

Journal ArticleDOI
TL;DR: An ongoing theme of the COVID-19 pandemic is the need for widespread availability of accurate and efficient diagnostic testing for detection of SARS-CoV-2 and antiviral antibodies in infected indiv...
Abstract: An ongoing theme of the COVID-19 pandemic is the need for widespread availability of accurate and efficient diagnostic testing for detection of SARS-CoV-2 and antiviral antibodies in infected indiv...

732 citations