scispace - formally typeset
Search or ask a question
Author

Jin Zhang

Bio: Jin Zhang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Carbon nanotube & Raman spectroscopy. The author has an hindex of 64, co-authored 221 publications receiving 14698 citations. Previous affiliations of Jin Zhang include Tsinghua University & Peking University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of chemical oxidation on the structure of single-walled carbon nanotubes (SWNTs) by using different oxidants was investigated using infrared spectroscopy and transmission electron microscopy (TEM).
Abstract: In the present study, we report the systematic investigation of the effect of chemical oxidation on the structure of single-walled carbon nanotubes (SWNTs) by using different oxidants. The oxidation procedure was characterized by using infrared spectroscopy and transmission electron microscopy (TEM). The SWNTs were produced by chemical vapor deposition (CVD) and oxidized with three kinds of oxidants: (1) nitric acid (2.6 M), (2) a mixture of concentrated sulfuric acid (98 wt %) and concentrated nitric acid (16 M) (v/v = 3/1) and (3) KMnO4. The results reveal that the different functional groups can be introduced when the SWNTs are treated with different oxidants. Refluxing in dilute nitric acid can be considered as a mild oxidation for SWNTs, introducing the carboxylic acid groups only at those initial defects that already exist. The abundance of the carboxylic acid groups generated with this oxidant remained constant along with the treating time. In contrast, sonication of SWNTs in H2SO4/HNO3 increased ...

1,129 citations

Journal ArticleDOI
TL;DR: It is observed that the intensities of the Raman signals on monolayer graphene are much stronger than on a SiO(2)/Si substrate, indicating a clear Raman enhancement effect on the surface of monolayers graphene.
Abstract: Graphene is a monolayer of carbon atoms packed into a two-dimensional (2D) honeycomb crystal structure, which is a special material with many excellent properties. In the present study, we will discuss the possibility that graphene can be used as a substrate for enhancing Raman signals of adsorbed molecules. Here, phthalocyanine (Pc), rhodamine 6G (R6G), protoporphyin IX (PPP), and crystal violet (CV), which are popular molecules widely used as a Raman probe, are deposited equally on graphene and a SiO2/Si substrate using vacuum evaporation or solution soaking. By comparing the Raman signals of molecules on monolayer graphene and on a SiO2/Si substrate, we observed that the intensities of the Raman signals on monolayer graphene are much stronger than on a SiO2/Si substrate, indicating a clear Raman enhancement effect on the surface of monolayer graphene. For solution soaking, the Raman signals of the molecules are visible even though the concentration is low to 10(-8) mol/L or less. What's more interesting, the enhanced efficiencies are quite different on monolayer, few-layer, multilayer graphene, graphite, and highly ordered pyrolytic graphite (HOPG). The Raman signals of molecules on multilayer graphene are even weaker than on a SiO2/Si substrate, and the signals are even invisible on graphite and HOPG. Taking the Raman signals on the SiO2/Si substrate as a reference, Raman enhancement factors on the surface of monolayer graphene can be obtained using Raman intensity ratios. The Raman enhancement factors are quite different for different peaks, changing from 2 to 17. Furthermore, we found that the Raman enhancement factors can be distinguished through three classes that correspond to the symmetry of vibrations of the molecule. We attribute this enhancement to the charge transfer between graphene and the molecules, which result in a chemical enhancement. This is a new phenomenon for graphene that will expand the application of graphene to microanalysis and is good for studying the basic properties of both graphene and SERS.

893 citations

Journal ArticleDOI
TL;DR: Signals from a G-SERS substrate were demonstrated to have interesting advantages over normal SERS, in terms of cleaner vibrational information free from various metal-molecule interactions and being more stable against photo-induced damage, but with a comparable enhancement factor.
Abstract: Surface enhanced Raman spectroscopy (SERS) is an attractive analytical technique, which enables single-molecule sensitive detection and provides its special chemical fingerprints. During the past decades, researchers have made great efforts towards an ideal SERS substrate, mainly including pioneering works on the preparation of uniform metal nanostructure arrays by various nanoassembly and nanotailoring methods, which give better uniformity and reproducibility. Recently, nanoparticles coated with an inert shell were used to make the enhanced Raman signals cleaner. By depositing SERS-active metal nanoislands on an atomically flat graphene layer, here we designed a new kind of SERS substrate referred to as a graphene-mediated SERS (G-SERS) substrate. In the graphene/metal combined structure, the electromagnetic “hot” spots (which is the origin of a huge SERS enhancement) created by the gapped metal nanoislands through the localized surface plasmon resonance effect are supposed to pass through the monolayer graphene, resulting in an atomically flat hot surface for Raman enhancement. Signals from a G-SERS substrate were also demonstrated to have interesting advantages over normal SERS, in terms of cleaner vibrational information free from various metal-molecule interactions and being more stable against photo-induced damage, but with a comparable enhancement factor. Furthermore, we demonstrate the use of a freestanding, transparent and flexible “G-SERS tape” (consisting of a polymer-layer-supported monolayer graphene with sandwiched metal nanoislands) to enable direct, real time and reliable detection of trace amounts of analytes in various systems, which imparts high efficiency and universality of analyses with G-SERS substrates.

513 citations

Journal ArticleDOI
Liming Xie1, Xi Ling1, Yuan Fang1, Jin Zhang1, Zhongfan Liu1 
TL;DR: The successful observation of resonance Raman peaks demonstrates that graphene can be used as a substrate to suppress FL in Resonance Raman spectroscopy (RRS), which has potential applications in low-concentration detection and RRS study of fluorescent molecules.
Abstract: We have measured resonance Raman spectra with greatly suppressed fluorescence (FL) background from rhodamine 6G (R6G) and protoporphyrin IX (PPP) adsorbed on graphene. The FL suppression is estimated to be ∼103 times for R6G. The successful observation of resonance Raman peaks demonstrates that graphene can be used as a substrate to suppress FL in resonance Raman spectroscopy (RRS), which has potential applications in low-concentration detection and RRS study of fluorescent molecules.

467 citations

Journal ArticleDOI
TL;DR: The graphene edge showed 4 orders of magnitude higher specific capacitance, much faster electron transfer rate and stronger electrocatalytic activity than those of graphene basal plane, making it an ideal electrode for electrocatalysis and for the storage of capacitive charges.
Abstract: Graphene has a unique atom-thick two-dimensional structure and excellent properties, making it attractive for a variety of electrochemical applications, including electrosynthesis, electrochemical sensors or electrocatalysis, and energy conversion and storage. However, the electrochemistry of single-layer graphene has not yet been well understood, possibly due to the technical difficulties in handling individual graphene sheet. Here, we report the electrochemical behavior at single-layer graphene-based electrodes, comparing the basal plane of graphene to its edge. The graphene edge showed 4 orders of magnitude higher specific capacitance, much faster electron transfer rate and stronger electrocatalytic activity than those of graphene basal plane. A convergent diffusion effect was observed at the sub-nanometer thick graphene edge-electrode to accelerate the electrochemical reactions. Coupling with the high conductivity of a high-quality graphene basal plane, graphene edge is an ideal electrode for electrocatalysis and for the storage of capacitive charges.

436 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Abstract: Graphene has attracted tremendous research interest in recent years, owing to its exceptional properties. The scaled-up and reliable production of graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), offers a wide range of possibilities to synthesize graphene-based functional materials for various applications. This critical review presents and discusses the current development of graphene-based composites. After introduction of the synthesis methods for graphene and its derivatives as well as their properties, we focus on the description of various methods to synthesize graphene-based composites, especially those with functional polymers and inorganic nanostructures. Particular emphasis is placed on strategies for the optimization of composite properties. Lastly, the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, as well as Raman enhancement are described (279 references).

3,340 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations

Journal ArticleDOI
TL;DR: In this paper, a review of nitrogen-doped graphene is presented, including various synthesis methods to introduce N doping and various characterization techniques for the examination of various N bonding configurations.
Abstract: Nitrogen doping has been an effective way to tailor the properties of graphene and render its potential use for various applications. Three common bonding configurations are normally obtained when doping nitrogen into the graphene: pyridinic N, pyrrolic N, and graphitic N. This paper reviews nitrogen-doped graphene, including various synthesis methods to introduce N doping and various characterization techniques for the examination of various N bonding configurations. Potential applications of N-graphene are also reviewed on the basis of experimental and theoretical studies.

3,075 citations