scispace - formally typeset
Search or ask a question
Author

Jin Zhu

Bio: Jin Zhu is an academic researcher from Northwestern University. The author has contributed to research in topics: Monolayer & Copolymer. The author has an hindex of 9, co-authored 11 publications receiving 3706 citations.

Papers
More filters
Journal ArticleDOI
Richard D. Piner1, Jin Zhu1, Feng Xu1, Seunghun Hong1, Chad A. Mirkin1 
29 Jan 1999-Science
TL;DR: A direct-write "dip-pen" nanolithography (DPN) has been developed to deliver collections of molecules in a positive printing mode, making DPN a potentially useful tool for creating and functionalizing nanoscale devices.
Abstract: A direct-write “dip-pen” nanolithography (DPN) has been developed to deliver collections of molecules in a positive printing mode. An atomic force microscope (AFM) tip is used to write alkanethiols with 30-nanometer linewidth resolution on a gold thin film in a manner analogous to that of a dip pen. Molecules are delivered from the AFM tip to a solid substrate of interest via capillary transport, making DPN a potentially useful tool for creating and functionalizing nanoscale devices.

2,843 citations

Journal ArticleDOI
15 Oct 1999-Science
TL;DR: The formation of intricate nanostructures will require the ability to maintain surface registry during several patterning steps, and a scanning probe method, dip-pen nanolithography (DPN), can be used to pattern monolayers of different organic molecules down to a 5-nanometer separation.
Abstract: The formation of intricate nanostructures will require the ability to maintain surface registry during several patterning steps. A scanning probe method, dip-pen nanolithography (DPN), can be used to pattern monolayers of different organic molecules down to a 5-nanometer separation. An "overwriting" capability of DPN allows one nanostructure to be generated and the areas surrounding that nanostructure to be filled in with a second type of "ink."

519 citations

Journal ArticleDOI
13 Oct 1999-Langmuir
TL;DR: In this paper, a new tool for studying self-assembled monolayer (SAM) nucleation and growth processes on faceted inorganic substrates under ambient conditions is reported.
Abstract: A new tool for studying self-assembled monolayer (SAM) nucleation and growth processes on faceted inorganic substrates under ambient conditions is reported herein. The methodology involves coating an atomic force microscope tip with molecules of interest and raster scanning across a substrate of interest with the modified tip. Large scale images of the deposition process provide kinetic information about the nucleation and growth of SAMs. The water meniscus, which is the transport medium in these experiments, is proposed to strongly influence the growth process for 1-octadecanethiol and 16-mercaptohexadecanoic acid. The former involves an island formation and subsequent growth behavior while the latter shows evidence of more random growth. Lattice-resolved images of both SAM structures have been obtained at the end of film growth, and in the case of the 1-octadecanethiol SAM, lattice-resolved images were obtained for the SAM islands. The virtues of this novel technique are its simplicity, adsorbate genera...

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
TL;DR: Two complementary strategies can be used in the fabrication of molecular biomaterials as discussed by the authors : chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly.
Abstract: Two complementary strategies can be used in the fabrication of molecular biomaterials. In the 'top-down' approach, biomaterials are generated by stripping down a complex entity into its component parts (for example, paring a virus particle down to its capsid to form a viral cage). This contrasts with the 'bottom-up' approach, in which materials are assembled molecule by molecule (and in some cases even atom by atom) to produce novel supramolecular architectures. The latter approach is likely to become an integral part of nanomaterials manufacture and requires a deep understanding of individual molecular building blocks and their structures, assembly properties and dynamic behaviors. Two key elements in molecular fabrication are chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly. Using natural processes as a guide, substantial advances have been achieved at the interface of nanomaterials and biology, including the fabrication of nanofiber materials for three-dimensional cell culture and tissue engineering, the assembly of peptide or protein nanotubes and helical ribbons, the creation of living microlenses, the synthesis of metal nanowires on DNA templates, the fabrication of peptide, protein and lipid scaffolds, the assembly of electronic materials by bacterial phage selection, and the use of radiofrequency to regulate molecular behaviors.

3,125 citations

Journal ArticleDOI
Richard D. Piner1, Jin Zhu1, Feng Xu1, Seunghun Hong1, Chad A. Mirkin1 
29 Jan 1999-Science
TL;DR: A direct-write "dip-pen" nanolithography (DPN) has been developed to deliver collections of molecules in a positive printing mode, making DPN a potentially useful tool for creating and functionalizing nanoscale devices.
Abstract: A direct-write “dip-pen” nanolithography (DPN) has been developed to deliver collections of molecules in a positive printing mode. An atomic force microscope (AFM) tip is used to write alkanethiols with 30-nanometer linewidth resolution on a gold thin film in a manner analogous to that of a dip pen. Molecules are delivered from the AFM tip to a solid substrate of interest via capillary transport, making DPN a potentially useful tool for creating and functionalizing nanoscale devices.

2,843 citations