scispace - formally typeset
Search or ask a question
Author

Jinendra Kumar Ranka

Other affiliations: Bell Labs
Bio: Jinendra Kumar Ranka is an academic researcher from Alcatel-Lucent. The author has contributed to research in topics: Optical fiber & Zero-dispersion wavelength. The author has an hindex of 12, co-authored 34 publications receiving 7333 citations. Previous affiliations of Jinendra Kumar Ranka include Bell Labs.

Papers
More filters
Journal ArticleDOI
28 Apr 2000-Science
TL;DR: The carrier-envelope phase of the pulses emitted by a femtosecond mode-locked laser is stabilized by using the powerful tools of frequency-domain laser stabilization to perform absolute optical frequency measurements that were directly referenced to a stable microwave clock.
Abstract: We stabilized the carrier-envelope phase of the pulses emitted by a femtosecond mode-locked laser by using the powerful tools of frequency-domain laser stabilization. We confirmed control of the pulse-to-pulse carrier-envelope phase using temporal cross correlation. This phase stabilization locks the absolute frequencies emitted by the laser, which we used to perform absolute optical frequency measurements that were directly referenced to a stable microwave clock.

2,499 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate experimentally that air-silica microstructure optical fibers can exhibit anomalous dispersion at visible wavelengths, and exploit this feature to generate an optical continuum 550 THz in width, extending from the violet to the infrared.
Abstract: We demonstrate experimentally for what is to our knowledge the first time that air–silica microstructure optical fibers can exhibit anomalous dispersion at visible wavelengths. We exploit this feature to generate an optical continuum 550 THz in width, extending from the violet to the infrared, by propagating pulses of 100-fs duration and kilowatt peak powers through a microstructure fiber near the zero-dispersion wavelength.

2,372 citations

Journal ArticleDOI
TL;DR: A great simplification in the long-standing problem of measuring optical frequencies in terms of the cesium primary standard is demonstrated, enabling us to measure the 282 THz frequency of an iodine-stabilized Nd:YAG laser directly in Terms of the microwave frequency that controls the comb spacing.
Abstract: We demonstrate a great simplification in the long-standing problem of measuring optical frequencies in terms of the cesium primary standard. An air-silica microstructure optical fiber broadens the frequency comb of a femtosecond laser to span the optical octave from 1064 to 532 nm, enabling us to measure the 282 THz frequency of an iodine-stabilized Nd:YAG laser directly in terms of the microwave frequency that controls the comb spacing. Additional measurements of established optical frequencies at 633 and 778 nm using the same femtosecond comb confirm the accepted uncertainties for these standards.

1,072 citations

Journal ArticleDOI
TL;DR: Ultrahigh-resolution optical coherence tomography (OCT) using continuum generation in an air-silica microstructure fiber as a low-coherence light source and imaging in biological tissue in vivo was demonstrated.
Abstract: We demonstrate ultrahigh-resolution optical coherence tomography (OCT) using continuum generation in an air–silica microstructure fiber as a low-coherence light source. A broadband OCT system was developed and imaging was performed with a bandwidth of 370 nm at a 1.3‐μm center wavelength. Longitudinal resolutions of 2.5 μm in air and ∼2 μm in tissue were achieved. Ultrahigh-resolution imaging in biological tissuein vivo was demonstrated.

956 citations

Journal ArticleDOI
TL;DR: An optical fiber that can appear single mode with propagation properties that can be achieved only in multimode waveguides is analysis of waveguide properties of microstructure optical fibers.
Abstract: We analyze the waveguide properties of microstructure optical fibers consisting of a silica core surrounded by a single ring of large air holes. Although the fibers can support numerous transverse spatial modes, coupling between these modes even in the presence of large perturbations is prevented for small core dimensions, owing to a large wave-vector mismatch between the lowest-order modes. The result is an optical fiber that can appear single mode with propagation properties that can be achieved only in multimode waveguides.

344 citations


Cited by
More filters
Journal ArticleDOI
17 Jan 2003-Science
TL;DR: In this article, a periodic array of microscopic air holes that run along the entire fiber length are used to guide light by corralling it within a periodic arrays of microscopic holes.
Abstract: Photonic crystal fibers guide light by corralling it within a periodic array of microscopic air holes that run along the entire fiber length Largely through their ability to overcome the limitations of conventional fiber optics—for example, by permitting low-loss guidance of light in a hollow core—these fibers are proving to have a multitude of important technological and scientific applications spanning many disciplines The result has been a renaissance of interest in optical fibers and their uses

3,918 citations

Journal ArticleDOI
04 Oct 2006
TL;DR: In this paper, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

3,361 citations

Journal ArticleDOI
14 Mar 2002-Nature
TL;DR: The ability to count optical oscillations of more than 1015 cycles per second facilitates high-precision optical spectroscopy, and has led to the construction of an all-optical atomic clock that is expected eventually to outperform today's state-of-the-art caesium clocks.
Abstract: Extremely narrow optical resonances in cold atoms or single trapped ions can be measured with high resolution. A laser locked to such a narrow optical resonance could serve as a highly stable oscillator for an all-optical atomic clock. However, until recently there was no reliable clockwork mechanism that could count optical frequencies of hundreds of terahertz. Techniques using femtosecond-laser frequency combs, developed within the past few years, have solved this problem. The ability to count optical oscillations of more than 1015 cycles per second facilitates high-precision optical spectroscopy, and has led to the construction of an all-optical atomic clock that is expected eventually to outperform today's state-of-the-art caesium clocks.

2,612 citations

Journal ArticleDOI
28 Apr 2000-Science
TL;DR: The carrier-envelope phase of the pulses emitted by a femtosecond mode-locked laser is stabilized by using the powerful tools of frequency-domain laser stabilization to perform absolute optical frequency measurements that were directly referenced to a stable microwave clock.
Abstract: We stabilized the carrier-envelope phase of the pulses emitted by a femtosecond mode-locked laser by using the powerful tools of frequency-domain laser stabilization. We confirmed control of the pulse-to-pulse carrier-envelope phase using temporal cross correlation. This phase stabilization locks the absolute frequencies emitted by the laser, which we used to perform absolute optical frequency measurements that were directly referenced to a stable microwave clock.

2,499 citations

Journal ArticleDOI
13 Dec 2007-Nature
TL;DR: This work reports the observation of rogue waves in an optical system, based on a microstructured optical fibre, near the threshold of soliton-fission supercontinuum generation—a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input.
Abstract: Recent observations show that the probability of encountering an extremely large rogue wave in the open ocean is much larger than expected from ordinary wave-amplitude statistics. Although considerable effort has been directed towards understanding the physics behind these mysterious and potentially destructive events, the complete picture remains uncertain. Furthermore, rogue waves have not yet been observed in other physical systems. Here, we introduce the concept of optical rogue waves, a counterpart of the infamous rare water waves. Using a new real-time detection technique, we study a system that exposes extremely steep, large waves as rare outcomes from an almost identically prepared initial population of waves. Specifically, we report the observation of rogue waves in an optical system, based on a microstructured optical fibre, near the threshold of soliton-fission supercontinuum generation--a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input. We model the generation of these rogue waves using the generalized nonlinear Schrodinger equation and demonstrate that they arise infrequently from initially smooth pulses owing to power transfer seeded by a small noise perturbation.

2,173 citations