scispace - formally typeset
Search or ask a question
Author

Jinfeng Chen

Bio: Jinfeng Chen is an academic researcher from Nanjing Agricultural University. The author has contributed to research in topics: Cucumis & Gene. The author has an hindex of 22, co-authored 89 publications receiving 1761 citations.
Topics: Cucumis, Gene, Medicine, Biology, Genome


Papers
More filters
Journal ArticleDOI
TL;DR: TUA, UBI-ep, and EF1alpha will be particularly helpful for reliable QRT-PCR data normalization in these types of samples, and guidelines for selecting different reference genes under different conditions are provided.

378 citations

Journal ArticleDOI
TL;DR: The results suggest that PAs play important roles in the tolerance of cucumber against chilling stress, which is most likely achieved by acting as oxidative machinery against chilling injury.

146 citations

Journal ArticleDOI
TL;DR: A high-density SNP map containing 1,800 SNPs was constructed for cucumber and for the first time an SNP-based saturated linkage map was constructed, likely to facilitate genetic mapping of complex QTL loci controlling fruit yield, and the orientation of draft genome scaffolds.
Abstract: Cucumber, Cucumis sativus L., is an economically important vegetable crop which is processed or consumed fresh worldwide. However, the narrow genetic base in cucumber makes it difficult for constructing high-density genetic maps. The development of massively parallel genotyping methods and next-generation sequencing (NGS) technologies provides an excellent opportunity for developing single nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of horticultural traits. Specific-length amplified fragment sequencing (SLAF-seq) is a recent marker development technology that allows large-scale SNP discovery and genotyping at a reasonable cost. In this study, we constructed a high-density SNP map for cucumber using SLAF-seq and detected fruit-related QTLs. An F2 population of 148 individuals was developed from an intra-varietal cross between CC3 and NC76. Genomic DNAs extracted from two parents and 148 F2 individuals were subjected to high-throughput sequencing and SLAF library construction. A total of 10.76 Gb raw data and 75,024,043 pair-end reads were generated to develop 52,684 high-quality SLAFs, out of which 5,044 were polymorphic. 4,817 SLAFs were encoded and grouped into different segregation patterns. A high-resolution genetic map containing 1,800 SNPs was constructed for cucumber spanning 890.79 cM. The average distance between adjacent markers was 0.50 cM. 183 scaffolds were anchored to the SNP-based genetic map covering 46% (168.9 Mb) of the cucumber genome (367 Mb). Nine QTLs for fruit length and weight were detected, a QTL designated fl3.2 explained 44.60% of the phenotypic variance. Alignment of the SNP markers to draft genome scaffolds revealed two mis-assembled scaffolds that were validated by fluorescence in situ hybridization (FISH). We report herein the development of evenly dispersed SNPs across cucumber genome, and for the first time an SNP-based saturated linkage map. This 1,800-locus map would likely facilitate genetic mapping of complex QTL loci controlling fruit yield, and the orientation of draft genome scaffolds.

108 citations

Journal ArticleDOI
TL;DR: The NBS-encoding genes in Cucurbitaceae crops are shown to be ancient, and NBS -encoding gene expansions (especially the TIR family) may have occurred before the divergence of Cucorbitaceae and Arabidopsis.
Abstract: Plant nucleotide-binding site (NBS)-leucine-rich repeat (LRR) proteins encoded by resistance genes play an important role in the responses of plants to various pathogens, including viruses, bacteria, fungi, and nematodes. In this study, a comprehensive analysis of NBS-encoding genes within the whole cucumber genome was performed, and the phylogenetic relationships of NBS-encoding resistance gene homologues (RGHs) belonging to six species in five genera of Cucurbitaceae crops were compared. Cucumber has relatively few NBS-encoding genes. Nevertheless, cucumber maintains genes belonging to both Toll/interleukine-1 receptor (TIR) and CC (coiled-coil) families. Eight commonly conserved motifs have been established in these two families which support the grouping into TIR and CC families. Moreover, three additional conserved motifs, namely, CNBS-1, CNBS-2 and TNBS-1, have been identified in sequences from CC and TIR families. Analyses of exon/intron configurations revealed that some intron loss or gain events occurred during the structural evolution between the two families. Phylogenetic analyses revealed that gene duplication, sequence divergence, and gene loss were proposed as the major modes of evolution of NBS-encoding genes in Cucurbitaceae species. Compared with NBS-encoding sequences from the Arabidopsis thaliana genome, the remaining seven TIR familes of NBS proteins and RGHs from Cucurbitaceae species have been shown to be phylogenetically distinct from the TIR family of NBS-encoding genes in Arabidopsis, except for two subfamilies (TIR4 and TIR9). On the other hand, in the CC-NBS family, they grouped closely with the CC family of NBS-encoding genes in Arabidopsis. Thus, the NBS-encoding genes in Cucurbitaceae crops are shown to be ancient, and NBS-encoding gene expansions (especially the TIR family) may have occurred before the divergence of Cucurbitaceae and Arabidopsis. The results of this paper will provide a genomic framework for the further isolation of candidate disease resistance NBS-encoding genes in cucumber, and contribute to the understanding of the evolutionary mode of NBS-encoding genes in Cucurbitaceae crops.

95 citations

Journal ArticleDOI
TL;DR: Attention is given to induction of haploid plants from female gametophyte culture through analysis of factors in the processes of gynogenesis, including genotype selection, stage of ovule development, pretreatment, and culture media containing nutritional components and phytohormones.
Abstract: Haploids and doubled haploids are very important in plant breeding, enabling the time needed to produce homozygous lines to be shortened compared with conventional breeding. In the present review, emphasis is given to haploid induction through unfertilized ovule/ovary culture. Attention is given to induction of haploid plants from female gametophyte culture through analysis of factors in the processes of gynogenesis, including genotype selection, stage of ovule development, pretreatment, and culture media containing nutritional components and phytohormones. The gynogenetic approach may be of great value in discovering novel genetic recombinations. Application of double haploids in genetics and plant breeding is also highlighted. This review also identifies some existing knowledge gaps where work may increase the efficiency of this process in different plant species.

94 citations


Cited by
More filters
10 Dec 2007
TL;DR: The experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.
Abstract: EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

1,528 citations

Journal ArticleDOI
TL;DR: Various aspects of the use of reference genes in qPCR technique used in the thousands of present studies are discussed, including examples of best normalizing genes in some specific cases and possible mistakes are presented based on available sources.
Abstract: This paper aims to discuss various aspects of the use of reference genes in qPCR technique used in the thousands of present studies. Most frequently, these are housekeeping genes and they must meet several criteria so that they can lay claim to the name. Lots of papers report that in different conditions, for different organisms and even tissues the basic assumption—the constant level of the expression is not maintained for many genes that seem to be perfect candidates. Moreover, their transcription can not be affected by experimental factors. Sounds simple and clear but a great number of designed protocols and lack of consistency among them brings confusion on how to perform experiment properly. Since during selection of the most stable normalizing gene we can not use any reference gene, different ways and algorithms for their selection were developed. Such methods, including examples of best normalizing genes in some specific cases and possible mistakes are presented based on available sources. Numerous examples of reference genes applications, which are usually in too few numbers in relevant articles not allowing to make a solid fundament for a reader, will be shown along with instructive compilations to make an evidence for presented statements and an arrangement of future qPCR experiments. To include all the pitfalls and problems associated with the normalization methods there is no way not to begin from sample preparation and its storage going through candidate gene selection, primer design and statistical analysis. This is important because numerous short reviews available cover the topic only in lesser extent at the same time giving the reader false conviction of complete topic recognition.

730 citations

Journal ArticleDOI
TL;DR: Genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants and the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants.
Abstract: Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants.

631 citations

Journal ArticleDOI
05 Sep 2014-Science
TL;DR: The Coffea canephora (coffee) genome was sequenced and identified a conserved gene order, and comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.
Abstract: Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.

513 citations