scispace - formally typeset
Search or ask a question
Author

Jing Chen

Bio: Jing Chen is an academic researcher from Wenzhou Medical College. The author has contributed to research in topics: SOCS2 & GSK-3. The author has co-authored 2 publications.

Papers
More filters
Journal ArticleDOI
Gang Chen1, Hong-Mei Qian1, Jing Chen1, Jie Wang1, Ji-Tian Guan1, Zai-Long Chi1 
TL;DR: In this paper, the authors integrated the time-series circRNA, lncRNA, miRNA, and mRNA expression profiles of the developing retina through whole-transcriptome sequencing and identified the key functional ncRNAs and the ceRNA network regulating retinal neurogenesis.
Abstract: Background The molecular complexity of neural retina development remains poorly studied. Knowledge of retinal neurogenesis regulation sheds light on retinal degeneration therapy exploration. Therefore, we integrated the time-series circRNA, lncRNA, miRNA, and mRNA expression profiles of the developing retina through whole-transcriptome sequencing. The key functional ncRNAs and the ceRNA network regulating retinal neurogenesis were identified. Results Transcriptomic analysis identified circRNA as the most variable ncRNA subtype. We screened a series of neurogenesis-related circRNAs, lncRNAs, and miRNAs using different strategies based on their diversified molecular functions. The expression of circCDYL, circATXN1, circDYM, circPRGRIP, lncRNA Meg3, and lncRNA Vax2os was validated by quantitative real-time PCR. These circRNAs and lncRNAs participate in neurotransmitter transport and multicellular organism growth through the intricate circRNA/lncRNA-miRNA-mRNA network. Conclusion Whole-transcriptome sequencing and bioinformatics analysis systematically screened key ncRNAs in retinal neurogenesis. The validated ncRNAs and their circRNA/lncRNA-miRNA-mRNA network involve neurotransmitter transport and multicellular organism growth during retinal development.

5 citations

Journal ArticleDOI
TL;DR: In this article, the role of suppressor of cytokine signaling 2 (SOCS2) in the metabolic regulation of autophagy in the RPE cells was explored.
Abstract: Retinal pigment epithelium (RPE) serves critical functions in maintaining retinal homeostasis. An important function of RPE is to degrade the photoreceptor outer segment fragments daily to maintain photoreceptor function and longevity throughout life. An impairment of RPE functions such as metabolic regulation leads to the development of age-related macular degeneration (AMD) and inherited retinal degenerative diseases. As substrate recognition subunit of a ubiquitin ligase complex, suppressor of cytokine signaling 2 (SOCS2) specifically binds to the substrates for ubiquitination and negatively regulates growth hormone signaling. Herein, we explore the role of SOCS2 in the metabolic regulation of autophagy in the RPE cells. SOCS2 knockout mice exhibited the irregular morphological deposits between the RPE and Bruch's membrane. Both in vivo and in vitro experiments showed that RPE cells lacking SOCS2 displayed impaired autophagy, which could be recovered by re-expressing SOCS2. SOCS2 recognizes the ubiquitylated proteins and participates in the formation of autolysosome by binding with autophagy receptors and lysosome-associated membrane protein2 (LAMP-2), thereby regulating the phosphorylation of glycogen synthase kinase 3β (GSK3β) and mammalian target of rapamycin (mTOR) during the autophagy process. Our results imply that SOCS2 participates in ubiquitin-autophagy-lysosomal pathway and enhances autophagy by regulating GSK3β and mTOR. This study provides a potential therapeutic target for AMD.

Cited by
More filters
Journal ArticleDOI
TL;DR: This study provided a new sight for the pathological mechanism of DR and revealed the potential value of hsa_circ_0095008 and hsa-circ_0001883 as diagnostic biomarkers for the early diagnosis of DR patients.
Abstract: Background: Circular RNAs (circRNAs), a class of non-coding and undegradable RNAs, play many pathological functions by acting as miRNA sponges, interacting with RNA-binding proteins, and others. The recent literature indicates that circRNAs possess the advanced superiority for the early screening of diabetic retinopathy (DR). Methods: CircRNA sources of peripheral blood mononuclear cells (PBMCs) from healthy controls (n = 4), diabetes mellitus patients (DM) (n = 4), and DR patients (n = 4) were extracted for circular RNA microarray analysis. Enriched biological modules and signaling pathways were analyzed by Gene Ontology Enrichment and Kyoto Encyclopedia of Genes and Genomes analysis, respectively. Real-time quantitative reverse transcription PCR (RT-qPCR) was performed to validate differentiated levels of several circRNAs (fold change ≥2, p < .05) in different groups of healthy control subjects (n = 20), DM patients (n = 60), and DR patients (n = 42). Based on our clinical data from DR, the diagnostic performance of candidate circRNAs was measured by operating characteristic curves (ROCs). Subsequently, their circRNA–miRNA networks were constructed by bioinformatics analysis. Results: Circular RNA microarray analysis was performed, and 2,452 and 289 circRNAs were screened with differential expression in DR patients compared to healthy controls and DM patients, respectively. Enrichment analyses showed that circRNAs in DR patients were enriched in extracellular matrix (ECM)–receptor interaction and focal adhesion pathways. The top 5 differential circRNAs in circRNA microarray analysis were subsequently quantified and verified by RT-qPCR. Consistently, a significant 2.2-fold reduction of hsa_circ_0095008 and 1.7-fold increase in hsa_circ_0001883 were identified in DR patients compared to DM patients. Meanwhile, the area under curves of hsa_circ_0095008 and hsa_circ_0001883 were 0.6710 (95% CI, 0.5646–0.7775) (p = 0.003399) and 0.6071 (95% CI, 0.4953–0.7189) (p = 0.06644), respectively, indicating a good diagnostic value. Conclusion: Our study provided a new sight for the pathological mechanism of DR and revealed the potential value of hsa_circ_0095008 and hsa_circ_0001883 as diagnostic biomarkers for the early diagnosis of DR patients.

4 citations

Proceedings ArticleDOI
02 Oct 2022
TL;DR: In this paper , the authors used differential expression (DE) and gene ontology (GO) analyses to study the genetic differences between mice with severe Glaucoma and multiple control groups.
Abstract: Glaucoma is the leading cause of irreversible blindness in people over the age of 60, accounting for 6.6 to 8% of all blindness in 2010, but there is still much to be learned about the genetic origins of the eye disease. With the modern development of Next-Generation Sequencing (NGS) technologies, scientists are starting to learn more about the genetic origins of Glaucoma. This research uses differential expression (DE) and gene ontology (GO) analyses to study the genetic differences between mice with severe Glaucoma and multiple control groups. Optical nerve head (ONH) and retina data samples of genome-wide RNA expression from NCBI (NIH) are used for pairwise comparison experimentation. In addition, principal component analysis (PCA) and dispersion visualization methods are employed to perform quality control tests of the sequenced data. Genes with skewed gene counts are also identified, as they may be marker genes for a particular severity of Glaucoma. The gene ontologies found in this experiment support existing knowledge of Glaucoma genesis, providing confidence that the results were valid. Future researchers can thoroughly study the gene lists generated by the DE and GO analyses to find potential activator or protector genes for Glaucoma in mice to develop drug treatments or gene therapies to slow or stop the progression of the disease. The overall goal is that in the future, such treatments can be made for humans as well to improve the quality of life for human patients with Glaucoma and reduce Glaucoma blindness rates.
Journal ArticleDOI
TL;DR: In this article , the authors characterized 4,523 lncRNA genes (MRLGs) in developing mouse retinas and found that the MRLGs were highly spatiotemporal specific in expression and played essential roles in regulating the genesis and function of mouse retina.
Abstract: The long non-coding RNAs (lncRNAs) are critical regulators of diverse biological processes. Nevertheless, a global view of its expression and function in the mouse retina, a crucial model for neurogenesis study, still needs to be made available.Herein, by integrating the established gene models and the result from ab initio prediction using short- and long-read sequencing, we characterized 4,523 lncRNA genes (MRLGs) in developing mouse retinas (from the embryonic day of 12.5 to the neonatal day of P28), which was so far the most comprehensive collection of retinal lncRNAs. Next, derived from transcriptomics analyses of different tissues and developing retinas, we found that the MRLGs were highly spatiotemporal specific in expression and played essential roles in regulating the genesis and function of mouse retinas. In addition, we investigated the expression of MRLGs in some mouse mutants and revealed that 97 intergenic MRLGs might be involved in regulating differentiation and development of retinal neurons through Math5, Isl1, Brn3b, NRL, Onecut1, or Onecut2 mediated pathways.In summary, this work significantly enhanced our knowledge of lncRNA genes in mouse retina development and provided valuable clues for future exploration of their biological roles.
Journal ArticleDOI
TL;DR: A short overview of the most important findings regarding microRNAs in the regulation of retinal development, from the developmental-dependent rearrangement of the microRNA expression program to the key roles of particular microRNA in the differentiation and maintenance of retina cell subtypes is provided in this article .
Abstract: The retina is among the highest organized tissues of the central nervous system. To achieve such organization, a finely tuned regulation of developmental processes is required to form the retinal layers that contain the specialized neurons and supporting glial cells to allow precise phototransduction. MicroRNAs are a class of small RNAs with undoubtful roles in fundamental biological processes, including neurodevelopment of the brain and the retina. This review provides a short overview of the most important findings regarding microRNAs in the regulation of retinal development, from the developmental-dependent rearrangement of the microRNA expression program to the key roles of particular microRNAs in the differentiation and maintenance of retinal cell subtypes.
Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors showed that si-MALAT 1 and miR-625-3p mimic both reduced apoptosis and epithelial-mesenchymal transition (EMT) in hypoxia-treated RPE cells, whereas si-malAT 1 was reversed by miR625- 3p inhibitor.