scispace - formally typeset
Search or ask a question
Author

Jing Deng

Bio: Jing Deng is an academic researcher from University of North Carolina at Greensboro. The author has contributed to research in topics: Wireless sensor network & Chemistry. The author has an hindex of 48, co-authored 147 publications receiving 11549 citations. Previous affiliations of Jing Deng include City University of Hong Kong & Zhejiang University of Technology.


Papers
More filters
Proceedings ArticleDOI
27 Oct 2003
TL;DR: This paper proposes a new key pre-distribution scheme, which substantially improves the resilience of the network compared to the existing schemes, and exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the probability that any nodes other than these compromised nodes are affected is close to zero.
Abstract: To achieve security in wireless sensor networks, it is important to be able to encrypt and authenticate messages sent among sensor nodes. Keys for encryption and authentication purposes must be agreed upon by communicating nodes. Due to resource constraints, achieving such key agreement in wireless sensor networks is non-trivial. Many key agreement schemes used in general networks, such as Diffie-Hellman and public-key based schemes, are not suitable for wireless sensor networks. Pre-distribution of secret keys for all pairs of nodes is not viable due to the large amount of memory used when the network size is large. To solve the key pre-distribution problem, two elegant key pre-distribution approaches have been proposed recently [11, 7].In this paper, we propose a new key pre-distribution scheme, which substantially improves the resilience of the network compared to the existing schemes. Our scheme exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the probability that any nodes other than these compromised nodes is affected is close to zero. This desirable property lowers the initial payoff of smaller scale network breaches to an adversary, and makes it necessary for the adversary to attack a significant proportion of the network. We also present an in depth analysis of our scheme in terms of network resilience and associated overhead.

1,200 citations

Journal ArticleDOI
TL;DR: A new key predistribution scheme is proposed which substantially improves the resilience of the network compared to previous schemes, and an in-depth analysis of the scheme in terms of network resilience and associated overhead is given.
Abstract: To achieve security in wireless sensor networks, it is important to be able to encrypt and authenticate messages sent between sensor nodes. Before doing so, keys for performing encryption and authentication must be agreed upon by the communicating parties. Due to resource constraints, however, achieving key agreement in wireless sensor networks is nontrivial. Many key agreement schemes used in general networks, such as Diffie-Hellman and other public-key based schemes, are not suitable for wireless sensor networks due to the limited computational abilities of the sensor nodes. Predistribution of secret keys for all pairs of nodes is not viable due to the large amount of memory this requires when the network size is large.In this paper, we provide a framework in which to study the security of key predistribution schemes, propose a new key predistribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an in-depth analysis of our scheme in terms of network resilience and associated overhead. Our scheme exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the probability that communications between any additional nodes are compromised is close to zero. This desirable property lowers the initial payoff of smaller-scale network breaches to an adversary, and makes it necessary for the adversary to attack a large fraction of the network before it can achieve any significant gain.

1,123 citations

Proceedings ArticleDOI
07 Mar 2004
TL;DR: It is shown that the performance of sensor networks can be substantially improved with the use of the proposed random key pre-distribution scheme, which exploits deployment knowledge and avoids unnecessary key assignments.
Abstract: To achieve security in wireless sensor networks, it is important to he able to encrypt messages sent among sensor nodes. Keys for encryption purposes must he agreed upon by communicating nodes. Due to resource constraints, achieving such key agreement in wireless sensor networks is nontrivial. Many key agreement schemes used in general networks, such as Diffie-Hellman and public-key based schemes, are not suitable for wireless sensor networks. Pre-distribution of secret keys for all pairs of nodes is not viable due to the large amount of memory used when the network size is large. Recently, a random key pre-distribution scheme and its improvements have been proposed. A common assumption made by these random key pre-distribution schemes is that no deployment knowledge is available. Noticing that in many practical scenarios, certain deployment knowledge may be available a priori, we propose a novel random key pre-distribution scheme that exploits deployment knowledge and avoids unnecessary key assignments. We show that the performance (including connectivity, memory usage, and network resilience against node capture) of sensor networks can he substantially improved with the use of our proposed scheme. The scheme and its detailed performance evaluation are presented in this paper.

1,001 citations

Journal ArticleDOI
TL;DR: It is concluded that the DBTMA protocol is superior to other schemes that rely on the RTS/CTS dialogue on a single channel or to those that rely upon a single busy tone, particularly in an ad hoc network with a large coverage area.
Abstract: In ad hoc networks, the hidden- and the exposed-terminal problems can severely reduce the network capacity on the MAC layer. To address these problems, the ready-to-send and clear-to-send (RTS/CTS) dialogue has been proposed in the literature. However, MAC schemes using only the RTS/CTS dialogue cannot completely solve the hidden and the exposed terminal problems, as pure "packet sensing" MAC schemes are not safe even in fully connected networks. We propose a new MAC protocol, termed the dual busy tone multiple access (DBTMA) scheme. The operation of the DBTMA protocol is based on the RTS packet and two narrow-bandwidth, out-of-band busy tones. With the use of the RTS packet and the receive busy tone, which is set up by the receiver, our scheme completely solves the hidden- and the exposed-terminal problems. The busy tone, which is set up by the transmitter, provides protection for the RTS packets, increasing the probability of successful RTS reception and, consequently, increasing the throughput. This paper outlines the operation rules of the DBTMA scheme and analyzes its performance. Simulation results are also provided to support the analytical results. It is concluded that the DBTMA protocol is superior to other schemes that rely on the RTS/CTS dialogue on a single channel or to those that rely on a single busy tone. As a point of reference, the DBTMA scheme out-performs FAMA-NCS by 20-40% in our simulations using the network topologies borrowed from the FAMA-NCS paper. In an ad hoc network with a large coverage area, DBTMA achieves performance gain of 140% over FAMA-NCS and performance gain of 20% over RI-BTMA.

589 citations

Journal ArticleDOI
TL;DR: The main idea of the 2ACK scheme is to send two-hop acknowledgment packets in the opposite direction of the routing path in order to reduce additional routing overhead.
Abstract: We study routing misbehavior in MANETs (mobile ad hoc networks) in this paper. In general, routing protocols for MANETs are designed based on the assumption that all participating nodes are fully cooperative. However, due to the open structure and scarcely available battery-based energy, node misbehaviors may exist. One such routing misbehavior is that some selfish nodes will participate in the route discovery and maintenance processes but refuse to forward data packets. In this paper, we propose the 2ACK scheme that serves as an add-on technique for routing schemes to detect routing misbehavior and to mitigate their adverse effect. The main idea of the 2ACK scheme is to send two-hop acknowledgment packets in the opposite direction of the routing path. In order to reduce additional routing overhead, only a fraction of the received data packets are acknowledged in the 2ACK scheme. Analytical and simulation results are presented to evaluate the performance of the proposed scheme

485 citations


Cited by
More filters
Book
01 Jan 2005

9,038 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal Article
TL;DR: The continuing convergence of the digital marketing and sales funnels has created a strategic continuum from digital lead generation to digital sales, which identifies the current composition of this digital continuum while providing opportunities to evaluate sales and marketing digital strategies.
Abstract: MKT 6009 Marketing Internship (0 semester credit hours) Student gains experience and improves skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation, or a written paper reflecting on the work experience. Student performance is evaluated by the work supervisor. Pass/Fail only. Prerequisites: (MAS 6102 or MBA major) and department consent required. (0-0) S MKT 6244 Digital Marketing Strategy (2 semester credit hours) Executive Education Course. The course explores three distinct areas within marketing and sales namely, digital marketing, traditional sales prospecting, and executive sales organization and strategy. The continuing convergence of the digital marketing and sales funnels has created a strategic continuum from digital lead generation to digital sales. The course identifies the current composition of this digital continuum while providing opportunities to evaluate sales and marketing digital strategies. Prerequisites: MKT 6301 and instructor consent required. (2-0) Y MKT 6301 (SYSM 6318) Marketing Management (3 semester credit hours) Overview of marketing management methods, principles and concepts including product, pricing, promotion and distribution decisions as well as segmentation, targeting and positioning. (3-0) S MKT 6309 Marketing Data Analysis and Research (3 semester credit hours) Methods employed in market research and data analysis to understand consumer behavior, customer journeys, and markets so as to enable better decision-making. Topics include understanding different sources of data, survey design, experiments, and sampling plans. The course will cover the techniques used for market sizing estimation and forecasting. In addition, the course will cover the foundational concepts and techniques used in data visualization and \"story-telling\" for clients and management. Corequisites: MKT 6301 and OPRE 6301. (3-0) Y MKT 6310 Consumer Behavior (3 semester credit hours) An exposition of the theoretical perspectives of consumer behavior along with practical marketing implication. Study of psychological, sociological and behavioral findings and frameworks with reference to consumer decision-making. Topics will include the consumer decision-making model, individual determinants of consumer behavior and environmental influences on consumer behavior and their impact on marketing. Prerequisite: MKT 6301. (3-0) Y MKT 6321 Interactive and Digital Marketing (3 semester credit hours) Introduction to the theory and practice of interactive and digital marketing. Topics covered include: online-market research, consumer behavior, conversion metrics, and segmentation considerations; ecommerce, search and display advertising, audiences, search engine marketing, email, mobile, video, social networks, and the Internet of Things. (3-0) T MKT 6322 Internet Business Models (3 semester credit hours) Topics to be covered are: consumer behavior on the Internet, advertising on the Internet, competitive strategies, market research using the Internet, brand management, managing distribution and supply chains, pricing strategies, electronic payment systems, and developing virtual organizations. Further, students learn auction theory, web content design, and clickstream analysis. Prerequisite: MKT 6301. (3-0) Y MKT 6323 Database Marketing (3 semester credit hours) Techniques to analyze, interpret, and utilize marketing databases of customers to identify a firm's best customers, understanding their needs, and targeting communications and promotions to retain such customers. Topics

5,537 citations

Posted Content
TL;DR: In this article, the authors introduce the concept of ''search'' where a buyer wanting to get a better price, is forced to question sellers, and deal with various aspects of finding the necessary information.
Abstract: The author systematically examines one of the important issues of information — establishing the market price. He introduces the concept of «search» — where a buyer wanting to get a better price, is forced to question sellers. The article deals with various aspects of finding the necessary information.

3,790 citations

Journal ArticleDOI
TL;DR: For the fully connected K user wireless interference channel where the channel coefficients are time-varying and are drawn from a continuous distribution, the sum capacity is characterized as C(SNR)=K/2log (SNR)+o(log( SNR), which almost surely has K/2 degrees of freedom.
Abstract: For the fully connected K user wireless interference channel where the channel coefficients are time-varying and are drawn from a continuous distribution, the sum capacity is characterized as C(SNR)=K/2log(SNR)+o(log(SNR)) . Thus, the K user time-varying interference channel almost surely has K/2 degrees of freedom. Achievability is based on the idea of interference alignment. Examples are also provided of fully connected K user interference channels with constant (not time-varying) coefficients where the capacity is exactly achieved by interference alignment at all SNR values.

3,385 citations