scispace - formally typeset
Search or ask a question
Author

Jing-Fa Deng

Bio: Jing-Fa Deng is an academic researcher from Fudan University. The author has contributed to research in topics: Catalysis & Amorphous solid. The author has an hindex of 32, co-authored 88 publications receiving 3226 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS) to characterize the surface electronic state of the as-prepared samples and found that boron donated electron to nickel in Ni-B alloy, resulting in electron-enrichment of elemental Ni.

321 citations

Journal ArticleDOI
TL;DR: In this article, three new kinds of Ni-based amorphous alloy catalysts, Raney type Ni-P(R-Ni-P), Ni-Co-B, and Ni-B(P)/SiO2, have been prepared by modification of either the rapid quenching method or chemical reduction.

258 citations

Journal ArticleDOI
TL;DR: In this paper, a convenient alcohothermal route to prepare cupric oxide nanoparticles using copper acetate as the starting material was successfully developed, and the influence of reaction temperature on the formation of CuO nanoparticles was investigated.

239 citations

Journal ArticleDOI
Wei-Lin Dai1, Qi Sun1, Jing-Fa Deng1, Dong Wu, Yu-Han Sun 
TL;DR: In this paper, the chemical states of Cu and Zn in an ultra-fine high performance Cu/ZnO/Al2O3 catalyst at various preparation stages for the methanol synthesis by CO2/H2 were investigated by X-ray photoelectron spectroscopy.

109 citations

Journal ArticleDOI
TL;DR: In this article, the Ni-B/SiO 2 amorphous catalyst was verified by XRD, EXAFS, and DSC, and the results showed that the maximum activity was achieved by using the 40-60 mesh SiO 2 support and calcining the catalyst precursor at 473 K for 2h.

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Abstract: 3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480 4.2.2. Epoxidation: Limonene Oxide 2480 4.2.3. Isomerization of Limonene Oxide 2481 4.2.4. Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481

5,127 citations

Journal ArticleDOI
TL;DR: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology.
Abstract: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology. A good example of the synergism between scientific discovery and technological development is the electronics industry, where discoveries of new semiconducting materials resulted in the evolution from vacuum tubes to diodes and transistors, and eventually to miniature chips. The progression of this technology led to the development * To whom correspondence should be addressed. B.L.C.: (504) 2801385 (phone); (504) 280-3185 (fax); bcushing@uno.edu (e-mail). C.J.O.: (504)280-6846(phone);(504)280-3185(fax);coconnor@uno.edu (e-mail). 3893 Chem. Rev. 2004, 104, 3893−3946

2,621 citations

Journal ArticleDOI
23 Apr 2012-Small
TL;DR: Progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage is reviewed, along with some discussions on challenges and perspectives in this exciting field.
Abstract: It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field.

1,287 citations

Journal ArticleDOI
TL;DR: A review of recent results published in the literature for biomass upgrading reactions using bimetallic catalysts offers the possibility of enabling lignocellulosic processing to become a larger part of the biofuels and renewable chemical industry.
Abstract: Research interest in biomass conversion to fuels and chemicals has increased significantly in the last decade as the necessity for a renewable source of carbon has become more evident. Accordingly, many different reactions and processes to convert biomass into high-value products and fuels have been proposed in the literature. Special attention has been given to the conversion of lignocellulosic biomass, which does not compete with food sources and is widely available as a low cost feedstock. In this review, we start with a brief introduction on lignocellulose and the different chemical structures of its components: cellulose, hemicellulose, and lignin. These three components allow for the production of different chemicals after fractionation. After a brief overview of the main reactions involved in biomass conversion, we focus on those where bimetallic catalysts are playing an important role. Although the reactions are similar for cellulose and hemicellulose, which contain C6 and C5 sugars, respectively, different products are obtained, and therefore, they have been reviewed separately. The third major fraction of lignocellulose that we address is lignin, which has significant challenges to overcome, as its structure makes catalytic processing more challenging. Bimetallic catalysts offer the possibility of enabling lignocellulosic processing to become a larger part of the biofuels and renewable chemical industry. This review summarizes recent results published in the literature for biomass upgrading reactions using bimetallic catalysts.

1,117 citations