scispace - formally typeset
Search or ask a question
Author

Jing Huang

Other affiliations: Pennsylvania State University, Stanford University, Solazyme  ...read more
Bio: Jing Huang is an academic researcher from Affymetrix. The author has contributed to research in topics: Medicine & SNP genotyping. The author has an hindex of 21, co-authored 25 publications receiving 7432 citations. Previous affiliations of Jing Huang include Pennsylvania State University & Stanford University.

Papers
More filters
Journal ArticleDOI
23 Nov 2006-Nature
TL;DR: A first-generation CNV map of the human genome is constructed through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia, underscoring the importance of CNV in genetic diversity and evolution and the utility of this resource for genetic disease studies.
Abstract: Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.

4,275 citations

Journal ArticleDOI
TL;DR: This work rapidly genotyped 14,548 SNPs in three different human populations and identified a subset of them with significant allele frequency differences between groups and determined the ancestral allele for 8,386 SNPs by genotyping chimpanzees and gorilla DNA.
Abstract: Genetic studies aimed at understanding the molecular basis of complex human phenotypes require the genotyping of many thousands of single-nucleotide polymorphisms (SNPs) across large numbers of individuals. Public efforts have so far identified over two million common human SNPs; however, the scoring of these SNPs is labor-intensive and requires a substantial amount of automation. Here we describe a simple but effective approach, termed whole-genome sampling analysis (WGSA), for genotyping thousands of SNPs simultaneously in a complex DNA sample without locus-specific primers or automation. Our method amplifies highly reproducible fractions of the genome across multiple DNA samples and calls genotypes at >99% accuracy. We rapidly genotyped 14,548 SNPs in three different human populations and identified a subset of them with significant allele frequency differences between groups. We also determined the ancestral allele for 8,386 SNPs by genotyping chimpanzee and gorilla DNA. WGSA is highly scaleable and enables the creation of ultrahigh density SNP maps for use in genetic studies.

615 citations

Journal ArticleDOI
TL;DR: The studies demonstrate that combining the genotype and copy number analyses gives greater insight into the underlying genetic alterations in cancer cells with identification of complex events including loss and reduplication of loci.
Abstract: Genomic copy number alterations are a feature of many human diseases including cancer. We have evaluated the effectiveness of an oligonucleotide array, originally designed to detect single-nucleotide polymorphisms, to assess DNA copy number. We first showed that fluorescent signal from the oligonucleotide array varies in proportion to both decreases and increases in copy number. Subsequently we applied the system to a series of 20 cancer cell lines. All of the putative homozygous deletions (10) and high-level amplifications (12; putative copy number >4) tested were confirmed by PCR (either qPCR or normal PCR) analysis. Low-level copy number changes for two of the lines under analysis were compared with BAC array CGH; 77% (n = 44) of the autosomal chromosomes used in the comparison showed consistent patterns of LOH (loss of heterozygosity) and low-level amplification. Of the remaining 10 comparisons that were discordant, eight were caused by low SNP densities and failed in both lines. The studies demonstrate that combining the genotype and copy number analyses gives greater insight into the underlying genetic alterations in cancer cells with identification of complex events including loss and reduplication of loci.

418 citations

Journal ArticleDOI
TL;DR: A high-throughput genotyping platform that uses a one-primer assay to genotype over 10,000 SNPs per individual on a single oligonucleotide array is presented and a linkage region on chromosome 2p for chronic mucocutaneous candidiasis and thyroid disease is replicated and refined.
Abstract: The analysis of single nucleotide polymorphisms (SNPs) is increasingly utilizedto investigate the genetic causes of complex human diseases. Here we present a high-throughput genotyping platform that uses a one-primer assay to genotype over 10,000 SNPs per individual on a single oligonucleotide array. This approach uses restriction digestion to fractionate the genome, followed by amplification of a specific fractionated subset of the genome. The resulting reduction in genome complexity enables allele-specific hybridization to the array. The selection of SNPs was primarily determined by computer-predicted lengths of restriction fragments containing the SNPs, andwas further driven by strict empirical measurements of accuracy, reproducibility, andaverage call rate, which we estimate to be >9.5%, >99.9%, and>95%, respectively. With average heterozygosity of 0.38 andgenome scan resolution of 0.31 cM, the SNP array is a viable alternative to panels of microsatellites (STRs). As a demonstration of the utility of the genotyping platform in whole-genome scans, we have replicated and refined a linkage region on chromosome 2p for chronic mucocutaneous candidiasis and thyroid disease, previously identified using a panel of microsatellite (STR) markers.

365 citations

Journal ArticleDOI
TL;DR: A novel algorithm that uses a recently developed high-density oligonucleotide array-based SNP genotyping method, whole genome sampling analysis (WGSA), to identify genome-wide chromosomal gains and losses at high resolution and can tolerate samples which contain a mixture of both tumour and normal DNA.
Abstract: Changes in DNA copy number are one of the hallmarks of the genetic instability common to most human cancers. Previous micro-array-based methods have been used to identify chromosomal gains and losses; however, they are unable to genotype alleles at the level of single nucleotide polymorphisms (SNPs). Here we describe a novel algorithm that uses a recently developed high-density oligonucleotide array-based SNP genotyping method, whole genome sampling analysis (WGSA), to identify genome-wide chromosomal gains and losses at high resolution. WGSA simultaneously genotypes over 10,000 SNPs by allele-specific hybridisation to perfect match (PM) and mismatch (MM) probes synthesised on a single array. The copy number algorithm jointly uses PM intensity and discrimination ratios between paired PM and MM intensity values to identify and estimate genetic copy number changes. Values from an experimental sample are compared with SNP-specific distributions derived from a reference set containing over 100 normal individuals to gain statistical power. Genomic regions with statistically significant copy number changes can be identified using both single point analysis and contiguous point analysis of SNP intensities. We identified multiple regions of amplification and deletion using a panel of human breast cancer cell lines. We verified these results using an independent method based on quantitative polymerase chain reaction and found that our approach is both sensitive and specific and can tolerate samples which contain a mixture of both tumour and normal DNA. In addition, by using known allele frequencies from the reference set, statistically significant genomic intervals can be identified containing contiguous stretches of homozygous markers, potentially allowing the detection of regions undergoing loss of heterozygosity (LOH) without the need for a matched normal control sample. The coupling of LOH analysis, via SNP genotyping, with copy number estimations using a single array provides additional insight into the structure of genomic alterations. With mean and median inter-SNP euchromatin distances of 244 kilobases (kb) and 119 kb, respectively, this method affords a resolution that is not easily achievable with non-oligonucleotide-based experimental approaches.

300 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work presents Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer, and uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions.
Abstract: We present Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer. MACS empirically models the shift size of ChIP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions. MACS compares favorably to existing ChIP-Seq peak-finding algorithms, and is freely available.

13,008 citations

Journal ArticleDOI
Paul Burton1, David Clayton2, Lon R. Cardon, Nicholas John Craddock3  +192 moreInstitutions (4)
07 Jun 2007-Nature
TL;DR: This study has demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in theBritish population is generally modest.
Abstract: There is increasing evidence that genome-wide association ( GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study ( using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined similar to 2,000 individuals for each of 7 major diseases and a shared set of similar to 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 X 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals ( including 58 loci with single-point P values between 10(-5) and 5 X 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research.

9,244 citations

Journal ArticleDOI
John W. Belmont1, Andrew Boudreau, Suzanne M. Leal1, Paul Hardenbol  +229 moreInstitutions (40)
27 Oct 2005
TL;DR: A public database of common variation in the human genome: more than one million single nucleotide polymorphisms for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted.
Abstract: Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Here we report a public database of common variation in the human genome: more than one million single nucleotide polymorphisms (SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted. These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We show how the HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and recombination, and identify loci that may have been subject to natural selection during human evolution.

5,479 citations

Journal ArticleDOI
18 Oct 2007-Nature
TL;DR: The Phase II HapMap is described, which characterizes over 3.1 million human single nucleotide polymorphisms genotyped in 270 individuals from four geographically diverse populations and includes 25–35% of common SNP variation in the populations surveyed, and increased differentiation at non-synonymous, compared to synonymous, SNPs is demonstrated.
Abstract: We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.

4,565 citations

Journal ArticleDOI
23 Nov 2006-Nature
TL;DR: A first-generation CNV map of the human genome is constructed through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia, underscoring the importance of CNV in genetic diversity and evolution and the utility of this resource for genetic disease studies.
Abstract: Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.

4,275 citations