scispace - formally typeset
Search or ask a question
Author

Jing Li

Bio: Jing Li is an academic researcher from Jilin University. The author has contributed to research in topics: Radar & Wave equation. The author has an hindex of 16, co-authored 75 publications receiving 914 citations. Previous affiliations of Jing Li include Delaware State University & Ministry of Land and Resources of the People's Republic of China.


Papers
More filters
Journal ArticleDOI
TL;DR: This letter applies the UWB radar system in through-wall human detection and presents the methods based on fast Fourier transform and S transform to detect and identify the human's life characteristic.
Abstract: Ultrawideband (UWB) radar technology has emerged as one of the preferred choices for through-wall detection due to its high range resolution and good penetration. The resolution is a result of high bandwidth of UWB radar and helpful for better separation of multiple targets in complex environment. Detection of human targets through a wall is interesting in many applications. One significant characteristic of human is the periodic motion, such as breathing and limb movement. In this letter, we apply the UWB radar system in through-wall human detection and present the methods based on fast Fourier transform and S transform to detect and identify the human's life characteristic. In particular, we can extract the center frequencies of life signals and locate the position of human targets from experimental data with high accuracy. Compared with other research studies in through-wall detection, this letter is concentrated in the processing and identifying of the life signal under strong clutter. It has a high signal-to-noise ratio and simpler to implement in complex environment detection. We can use the method to search and locate the survivor trapped under the building debris during earthquake, explosion, or fire.

230 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the combination of UWB radar as the hardware and advanced signal-processing algorithms as the software has potential for efficient vital sign detection and location in search and rescue for trapped victims in complex environment.
Abstract: Ultra-wideband (UWB) radar plays an important role in search and rescue at disaster relief sites. Identifying vital signs and locating buried survivors are two important research contents in this field. In general, it is hard to identify a human's vital signs (breathing and heartbeat) in complex environments due to the low signal-to-noise ratio of the vital sign in radar signals. In this paper, advanced signal-processing approaches are used to identify and to extract human vital signs in complex environments. First, we apply Curvelet transform to remove the source-receiver direct coupling wave and background clutters. Next, singular value decomposition is used to de-noise in the life signals. Finally, the results are presented based on FFT and Hilbert-Huang transform to separate and to extract human vital sign frequencies, as well as the micro-Doppler shift characteristics. The proposed processing approach is first tested by a set of synthetic data generated by FDTD simulation for UWB radar detection of two trapped victims under debris at an earthquake site of collapsed buildings. Then, it is validated by laboratory experiments data. The results demonstrate that the combination of UWB radar as the hardware and advanced signal-processing algorithms as the software has potential for efficient vital sign detection and location in search and rescue for trapped victims in complex environment.

144 citations

Journal ArticleDOI
TL;DR: A time and frequency analysis method based on the complete ensemble empirical mode decomposition (CEEMD) method in ground-penetrating radar (GPR) signal processing demonstrates that CEEMD promises higher spectral-spatial resolution than the other two EMD methods in GPR signal denoising and target extraction.
Abstract: In this letter, we apply a time and frequency analysis method based on the complete ensemble empirical mode decomposition (CEEMD) method in ground-penetrating radar (GPR) signal processing. It decomposes the GPR signal into a sum of oscillatory components, with guaranteed positive and smoothly varying instantaneous frequencies. The key idea of this method relies on averaging the modes obtained by empirical mode decomposition (EMD) applied to several realizations of Gaussian white noise added to the original signal. It can solve the mode-mixing problem in the EMD method and improve the resolution of ensemble EMD (EEMD) when the signal has a low signal-to-noise ratio. First, we analyze the difference between the basic theory of EMD, EEMD, and CEEMD. Then, we compare the time and frequency analysis with Hilbert–Huang transform to test the results of different methods. The synthetic and real GPR data demonstrate that CEEMD promises higher spectral–spatial resolution than the other two EMD methods in GPR signal denoising and target extraction. Its decomposition is complete, with a numerically negligible error.

78 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the resources of the IT Research Computing Group and the Supercomputing Laboratory at KAUST for computational resources required for carrying out this work, and they also provided funding by the CRG grant OCRF-2014-CRG3-2300.
Abstract: We thank the financial support from the sponsors of the Consortium of Subsurface Imaging and Fluid Modeling (CSIM). We also thank KAUST for providing funding by the CRG grantOCRF-2014-CRG3-2300. For computer time, this research used the resources of the IT Research Computing Group and the Supercomputing Laboratory at KAUST. We thank them for providing the computational resources required for carrying out this work.

69 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the MIMO GPR system with a multipolarization detection mode can overcome the influence of target radar cross sections and antenna radiation directions, and improve target detection accuracy effectively.
Abstract: In this paper, we combine the multiple-input-multiple-output (MIMO) array antenna technology with a multipolarization component in a ground penetrating radar (GPR) system to improve target detection accuracy. The MIMO technology introduced in previous literature is widely applied in radar and other wireless communication fields. Here, we apply the MIMO technology with a “plane-wave like” (PWL) source that uses array antennas with small spacing to emit a pulse source at the same time in GPR detection. First, we analyze the physical mechanism of the MIMO GPR system with a “PWL” source to improve the target detection resolution. Then, we carry out a numerical simulation with a finite-difference time-domain method in 1-D and 2-D array antennas to compare the imaging results of the MIMO and traditional GPR systems. Finally, the synthetic data MIMO GPR experiment with a step-frequency GPR system is implemented. Compared with the traditional GPR system, our results demonstrate that the MIMO GPR system with a multipolarization detection mode can overcome the influence of target radar cross sections and antenna radiation directions, and improve target detection accuracy effectively. Meanwhile, the synthetic MIMO GPR system also provides a good idea to improve the system performance and reduce system design requirements and the manufacture cost.

42 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2010

5,842 citations

01 Jan 1997
TL;DR: In this article, the spectral ratio between horizontal and vertical components (H/V ratio) of microtremors measured at the ground surface has been used to estimate fundamental periods and amplification factors of a site, although this technique lacks theoretical background.
Abstract: The spectral ratio between horizontal and vertical components (H/V ratio) of microtremors measured at the ground surface has been used to estimate fundamental periods and amplification factors of a site, although this technique lacks theoretical background. The aim of this article is to formulate the H/V technique in terms of the characteristics of Rayleigh and Love waves, and to contribute to improve the technique. The improvement includes use of not only peaks but also troughs in the H/V ratio for reliable estimation of the period and use of a newly proposed smoothing function for better estimation of the amplification factor. The formulation leads to a simple formula for the amplification factor expressed with the H/V ratio. With microtremor data measured at 546 junior high schools in 23 wards of Tokyo, the improved technique is applied to mapping site periods and amplification factors in the area.

1,130 citations

Journal ArticleDOI
TL;DR: Interpretation theory in applied geophysics: Grant, F S as mentioned in this paper, Unknown Binding, January 1, 1965 5.0 out of 5 stars 1 rating. Read it now.
Abstract: Interpretation theory in applied geophysics: Grant, F S ... Interpretation theory in applied geophysics Unknown Binding – January 1, 1965 5.0 out of 5 stars 1 rating. See all formats and editions Hide other formats and editions. The Amazon Book Review Book recommendations, author interviews, editors' picks, and more. Read it now. Enter your mobile number or email address below and we'll send you a ...

1,007 citations

Journal ArticleDOI

674 citations

Book ChapterDOI
01 Jan 2018
TL;DR: Ground penetrating radar (GPR) is a tool for indirectly looking at underground objects (such as graves, gravel and sand layers, and other underground structures) using radio waves, which have a longer wavelength than x-rays.
Abstract: Ground penetrating radar (GPR) is a tool for indirectly looking at underground objects (such as graves), gravel and sand layers, and other underground structures. The information or data received by GPR is like an x-ray or map of the underground. In fact, GPR uses electromagnetic (EM) waves, as xray machines do, but GPR uses radio waves, which have a longer wavelength (see Figure A1). The wavelength, or the length of one wave, is the fundamental difference between the forms of electromagnetic energy. For example, the wavelength of x-rays range from about 10 billionths of a meter to about 10 trillionths of a meter, whereas radio waves can be a few meters long.

428 citations