scispace - formally typeset
Search or ask a question
Author

Jing Zhang

Other affiliations: Hebei Medical University
Bio: Jing Zhang is an academic researcher from Zhejiang University. The author has contributed to research in topics: Epithelial–mesenchymal transition & Cancer. The author has an hindex of 3, co-authored 5 publications receiving 108 citations. Previous affiliations of Jing Zhang include Hebei Medical University.

Papers
More filters
Journal ArticleDOI
Hui Cao1, Jing Zhang1, Hong Liu1, Ledong Wan1, Honghe Zhang1, Qiong Huang1, Enping Xu1, Maode Lai1 
TL;DR: It is shown that the pleiotropic cytokine interleukin-13 (IL-13) could induce an aggressive phenotype displaying EMT by enhancing the expression of EMT-promoting factor ZEB1 and the STAT6 signaling inhibitor and STAT6 knockdown significantly reversed IL-13-induced EMT and Z EB1 induction in CRC cells.
Abstract: Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide due to the distant metastases. Compelling evidence has reported that epithelial-mesenchymal transition (EMT) is involved in promoting cancer invasion and metastasis. However, the precise molecular events that initiate this complex EMT process remain poorly understood. Here, we showed that the pleiotropic cytokine interleukin-13 (IL-13) could induce an aggressive phenotype displaying EMT by enhancing the expression of EMT-promoting factor ZEB1. Importantly, STAT6 signaling inhibitor and STAT6 knockdown significantly reversed IL-13-induced EMT and ZEB1 induction in CRC cells, whereas ectopic STAT6 expression in STAT6null CRC cell line markedly promoted EMT in the present of IL-13. ChIP-PCR and Luciferase assays revealed that activated STAT6 directly bound to the promoter of ZEB1. Otherwise, we found IL-13 also up-regulated the stem cell markers (nanog, CD44, CD133 and CD166) and promoted cell migration and invasion through STAT6 pathway. We also found that siRNA-mediated knockdown of IL-13Rα1 could reverse IL-13-induced ZEB1 and EMT changes by preventing STAT6 signaling. Finally, we demonstrated positive correlation between IL-13Rα1 and ZEB1 at mRNA levels in human CRC samples. Taken together, our findings first demonstrated that IL-13/IL-13Rα1/STAT6/ZEB1 pathway plays a critical role in promoting EMT and aggressiveness of CRC.

69 citations

Journal ArticleDOI
TL;DR: This study provided direct morphological evidence that tumor-associated macrophages in the invasive front play critical roles in fighting with the unfavorable results of tumor buds, thus resulting favorable outcomes for CRC patients.
Abstract: The immune contexture, a composition of the tumor microenvironment, plays multiple important roles in cancer stem cell (CSC) and epithelial-mesenchymal transition (EMT), and hence critically influences tumor initiation, progression and patient outcome. Tumor-associated macrophages (TAMs) are abundant in immune contexture, however their roles in CSC, EMT and prognosis of colorectal cancer (CRC) have not been elucidated. In 419 colorectal carcinomas, immune cell types (CD68+ macrophages, CD3+, CD4+ or CD8+ T lymphocytes, CD20+ B lymphocytes), EMT markers (E-cadherin and Snail) as well as the stem cell marker (CD44v6) were detected in tumor center (TC) and tumor invasive front (TF) respectively by immunohistochemistry. Tumor buds, that represent EMT phenotype, were also counted. It was found CD68+ macrophages were the most infiltrating immune cells in CRC. By correlation analysis, more CD68+TF macrophages were associated with more CD44v6 expression (p < 0.001), lower SnailTF expression (p = 0.08) and fewer tumor buds (p < 0.001). More CD68+TF macrophages were significantly related to more CD3+TF T lymphocytes (p = 0.002), CD8+TF T lymphocytes (p < 0.001) and CD20+TF B lymphocytes counts (p = 0.004). Strong CD68+TF macrophages infiltration also predicted long term overall survival. CRC patients with more tumor buds had worse survival. However, strong CD68+TF macrophages infiltration could reverse the unfavorable results since patients with more tumor buds but increasing CD68+TF macrophages infiltration had the favorable outcome, similar to lower tumor buds groups. This study provided direct morphological evidence that tumor-associated macrophages in the invasive front play critical roles in fighting with the unfavorable results of tumor buds, thus resulting favorable outcomes for CRC patients.

67 citations

Journal ArticleDOI
Fangying Xu1, Si Li1, Jing Zhang1, Lili Wang1, Xuesong Wu1, Jing Wang1, Qiong Huang1, Maode Lai1 
TL;DR: Investigating for the first time the clinical significance of combining cancer stem cells, immune cells, and EMT traits in colorectal cancer found them to be associated with each other, and cluster SIE was an independent predictor for 5‐year survival of patients with colore CT scans.

22 citations

Journal ArticleDOI
TL;DR: In this paper, a systematic and comprehensive analysis of relationship of DNA hypermethylation and ADAM12 expression in colorectal cancer was performed in their samples and TCGA database.
Abstract: Background Colorectal cancer (CRC) is a kind of malignant tumor of digestive system severely affecting human health. The occurrence of CRC is a polygenic and multi-step complex process involving genetic and epigenetic alterations. ADAM12 (a disintegrin and metalloproteases 12), is a gene that was commonly hypermethylated in esophageal cancer using whole-genome methylation microarray in our previous study. Methods We detected the methylation frequencies of the CpG island in ADAM12 promoter using bisulfite-pyrosequencing in CRC cell lines and tissue samples. The expression of ADAM12 was detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). A systematic and comprehensive analysis of relationship of DNA hypermethylation and ADAM12 expression in CRC was performed in our samples and TCGA database. Results The expression of ADAM12 in hypermethylated cell lines was significantly lower than that in hypomethylated cell lines, and demethylation agent 5-Aza-dC could demethylate ADAM12 promoter region and reactivate ADAM12 expression effectively. In 74 pairs of colorectal cancer and normal tissues, bisulfite-pyrosequencing results showed significantly hypermethylation of ADAM12 in CRC compared with adjacent normal mucosa, accompanied with lower expression of ADAM12 in CRC tissues compared to that of the normal tissues. In addition, there was a statistically significant negative correlation between ADAM12 protein expression and methylation levels (rho =-0.28, p = 0.015). Conclusion Promoter hypermethylation was probably a mechanism of ADAM12 epigenetic silencing in CRC.

2 citations

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors revealed that ADAMTS14 was highly methylated accompanied with low expression in colorectal cancer and demethylation agent 5-Aza-dC could demethylate ADAMS14 promoter region and reactivate ADCTS14 expression effectively in vitro.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The role of TAMs in promoting tumor growth, enhancing cancer cells resistance to chemotherapy and radiotherapy, promoting tumor angiogenesis, inducing tumor migration and invasion and metastasis, activating immunosuppression is focused on.
Abstract: In many solid tumor types, tumor-associated macrophages (TAMs) are important components of the tumor microenvironment (TME). Moreover, TAMs infiltration is strongly associated with poor survival in solid tumor patients. In this review, we describe the origins of TAMs and their polarization state dictated by the TME. We also specifically focus on the role of TAMs in promoting tumor growth, enhancing cancer cells resistance to chemotherapy and radiotherapy, promoting tumor angiogenesis, inducing tumor migration and invasion and metastasis, activating immunosuppression. In addition, we discuss TAMs can be used as therapeutic targets of solid tumor in clinics. The therapeutic strategies include clearing macrophages and inhibiting the activation of TAMs, promoting macrophage phagocytic activity, limiting monocyte recruitment and other targeted TAMs therapies.

515 citations

Journal ArticleDOI
TL;DR: It is indicated that TAMs induce EMT program to enhance CRC migration, invasion, and CTC-mediated metastasis by regulating the JAK2/STAT3/miR-506-3p/FoxQ1 axis, which in turn leads to the production of CCL2 that promote macrophage recruitment, revealing a new cross-talk between immune cells and tumor cells in CRC microenvironment.
Abstract: Tumor-associated macrophages (TAMs) are major components of tumor microenvironment that frequently associated with tumor metastasis in human cancers. Circulating tumor cell (CTC), originating from primary tumor sites, is considered to be the precursors of tumor metastasis. However, the regulatory mechanism of TAMs in CTC-mediated tumor metastasis still remains unclear. Immunohistochemical staining was used to detect the macrophages infiltration (CD68 and CD163), epithelial–mesenchymal transition (EMT) markers (E-cadherin and Vimentin) expression in serial sections of human colorectal cancer (CRC) specimens. Then, the correlations between macrophages infiltration and clinicopathologic features, mesenchymal CTC ratio, and patients’ prognosis were analyzed. A co-culture assay in vitro was used to evaluate the role of TAMs on CRC EMT, migration and invasion, and ELISA, luciferase reporter assay and CHIP were performed to uncover the underlying mechanism. Furthermore, an in vivo model was carried out to confirm the effect of TAMs on mesenchymal CTC-mediated metastasis. Clinically, CD163+ TAMs infiltrated in invasive front was associated with EMT, mesenchymal CTC ratio, and poor prognosis in patients with CRC. CRC–conditioned macrophages regulated EMT program to enhance CRC cells migration and invasion by secreting IL6. TAMs-derived IL6 activated the JAK2/STAT3 pathway, and activated STAT3 transcriptionally inhibited the tumor suppressor miR-506-3p in CRC cells. miR-506-3p, a key miRNA regulating FoxQ1, was downregulated in CRC cells, resulting in increased FoxQ1 expression, which in turn led to the production of CCL2 that promoted macrophage recruitment. Inhibition of CCL2 or IL6 broke this loop and reduced macrophage migration and mesenchymal CTC-mediated metastasis, respectively. Our data indicates that TAMs induce EMT program to enhance CRC migration, invasion, and CTC-mediated metastasis by regulating the JAK2/STAT3/miR-506-3p/FoxQ1 axis, which in turn leads to the production of CCL2 that promote macrophage recruitment, revealing a new cross-talk between immune cells and tumor cells in CRC microenvironment.

362 citations

Journal ArticleDOI
TL;DR: This Perspective discusses how CSCs are active architects of their microenvironment and drive interactions with other tumor components, such as immune cells, cancer-associated fibroblasts and differentiated cells, blood vessels, and other extracellular cues to engineer a sustainable niche.

344 citations

Journal ArticleDOI
TL;DR: The role of the different immune landscapes in CRC and their relationships with defined CRC genetic subtypes are discussed and in which ways CRC cells develop mechanisms to resist ICI are considered.
Abstract: Colorectal cancer (CRC) is highly heterogeneous at the genetic and molecular level, which has major repercussions on the efficacy of immunotherapy. A small subset of CRCs exhibit microsatellite instability (MSI), a molecular indicator of defective DNA mismatch repair (MMR), but the majority are microsatellite-stable (MSS). The high tumor mutational burden (TMB) and neoantigen load in MSI tumors favors the infiltration of immune effector cells, and antitumor immune responses within these tumors are strong relative to their MSS counterparts. MSI has emerged as a major predictive marker for the efficacy of immune checkpoint blockade over the last few years and nivolumab or pembrolizumab targeting PD-1 has been approved for patients with MSI refractory or metastatic CRC. However, some MSS tumors show DNA polymerase epsilon (POLE) mutations that also confer a very high TMB and may also be heavily infiltrated by immune cells making them amenable to respond to immune checkpoint inhibitors (ICI). In this review we discuss the role of the different immune landscapes in CRC and their relationships with defined CRC genetic subtypes. We discuss potential reasons why immune checkpoint blockade has met with limited success for the majority of CRC patients, despite the finding that immune cell infiltration of primary non-metastatic tumors is a strong predictive, and prognostic factor for relapse and survival. We then consider in which ways CRC cells develop mechanisms to resist ICI. Finally, we address the latest advances in CRC vaccination and how a personalized neoantigen vaccine strategy might overcome the resistance of MSI and MSS tumors in patients for whom immune checkpoint blockade is not a treatment option.

235 citations

Journal ArticleDOI
TL;DR: A review of interleukin-related mechanisms in cancer, together with their application in clinical practice is provided in this paper, which includes an overview of current clinical trials and breakthrough preclinical concepts.
Abstract: Interleukins and associated cytokines serve as the means of communication for innate and adaptive immune cells as well as non-immune cells and tissues. Thus, interleukins have a critical role in cancer development, progression and control. Interleukins can nurture an environment enabling and favouring cancer growth while simultaneously being essential for a productive tumour-directed immune response. These properties of interleukins can be exploited to improve immunotherapies to promote effectiveness as well as to limit side effects. This Review aims to unravel some of these complex interactions. This Review provides an update of interleukins in tumour biology, covering the milestones of the latest discoveries of interleukin-related mechanisms in cancer, together with their application in clinical practice. It includes an overview of current clinical trials and breakthrough preclinical concepts.

206 citations