scispace - formally typeset
Search or ask a question
Author

Jing Zhang

Bio: Jing Zhang is an academic researcher from Medical University of South Carolina. The author has contributed to research in topics: Vascular tissue & Caveolin 1. The author has an hindex of 8, co-authored 10 publications receiving 1340 citations.

Papers
More filters
01 Jan 2009
TL;DR: Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks.
Abstract: Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks. The microtissues and tissue spheroids are living materials with certain measurable, evolving and potentially controllable composition, material and biological properties. Closely placed tissue spheroids undergo tissue fusion - a process that represents a fundamental biological and biophysical principle of developmental biology-inspired directed tissue self-assembly. It is possible to engineer small segments of an intraorgan branched vascular tree by using solid and lumenized vascular tissue spheroids. Organ printing could dramatically enhance and transform the field of tissue engineering by enabling large-scale industrial robotic biofabrication of living human organ constructs with "built-in" perfusable intraorgan branched vascular tree. Thus, organ printing is a new emerging enabling technology paradigm which represents a developmental biology-inspired alternative to classic biodegradable solid scaffold-based approaches in tissue engineering.

942 citations

Journal ArticleDOI
TL;DR: This work presents the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly for tissue engineering based on organ-printing technology using self-assembling vascular tissue Spheroids.
Abstract: Importance of the field: Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks.Areas covered in this review: We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly.What the reader will gain: The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed.Take home message: It is not p...

211 citations

Journal ArticleDOI
TL;DR: It is suggested that low caveolin-1 in S Sc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors.
Abstract: Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors.

92 citations

Journal ArticleDOI
TL;DR: Caveolin-1 downregulation in leucocytes contributes to fibrotic lung disease, highlighting caveolin- 1 as a promising therapeutic target in scleroderma.
Abstract: Objectives Reduced caveolin-1 levels in lung fibroblasts from patients with scleroderma and the lungs of bleomycin-treated mice promote collagen overexpression and lung fibrosis. This study was undertaken to determine whether caveolin-1 is deficient in leucocytes from bleomycin-treated mice and patients with scleroderma and to examine the consequences of this deficiency and its reversal. Methods Mice or cells received the caveolin-1 scaffolding domain (CSD) peptide to reverse the pathological effects of reduced caveolin-1 expression. In bleomycin-treated mice, the levels of caveolin-1 in leucocytes and the effect of CSD peptide on leucocyte accumulation in lung tissue were examined. To validate the results in human disease and to identify caveolin-1-regulated molecular mechanisms, monocytes and neutrophils were isolated from patients with scleroderma and control subjects and caveolin-1, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, CXC chemokine receptor 4 (CXCR4) and matrix metalloproteinase 9 (MMP-9) expression/activation were evaluated. These parameters were also studied in monocytes treated with cytokines or CSD peptide. Results Leucocyte caveolin-1 is important in lung fibrosis. In bleomycin-treated mice, caveolin-1 expression was diminished in monocytes and CSD peptide inhibited leucocyte recruitment into the lungs. These observations are relevant to human disease. Monocytes and neutrophils from patients with scleroderma contained less caveolin-1 and more activated ERK, JNK and p38 than those from control subjects. Treatment with CSD peptide reversed ERK, JNK and p38 hyperactivation. Scleroderma monocytes also overexpressed CXCR4 and MMP-9, which was inhibited by the CSD peptide. Cytokine treatment of normal monocytes caused adoption of the scleroderma phenotype (low caveolin-1, high CXCR4 and MMP-9 and signalling molecule hyperactivation). Conclusions Caveolin-1 downregulation in leucocytes contributes to fibrotic lung disease, highlighting caveolin-1 as a promising therapeutic target in scleroderma.

61 citations

Journal ArticleDOI
TL;DR: By safely incorporating MNPs into cellular spheroids, results demonstrated that JMCSs were capable of magnetic manipulation, and that magnetic forces used during magnetic force assembly mediate fusion into controlled patterns and complex tissues.

55 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation and developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
Abstract: Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

4,841 citations

Journal ArticleDOI
TL;DR: Polycaprolactone (PCL) was used in the biomaterials field and a number of drug-delivery devices for up to 3-4 years.

3,070 citations

Journal ArticleDOI
TL;DR: Polymers are by far the most utilized class of materials for AM and their design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed.
Abstract: Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting....

2,136 citations

Journal ArticleDOI
TL;DR: An integrated tissue–organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape is presented and the incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100–200 μm for cell survival in engineered tissues.
Abstract: A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs.

1,960 citations

Journal ArticleDOI
TL;DR: A new bioprinting method is reported for fabricating 3D tissue constructs replete with vasculature, multiple types of cells, and extracellular matrix that open new -avenues for drug screening and fundamental studies of wound healing, angiogenesis, and stem-cell niches.
Abstract: A new bioprinting method is reported for fabricating 3D tissue constructs replete with vasculature, multiple types of cells, and extracellular matrix. These intricate, heterogeneous structures are created by precisely co-printing multiple materials, known as bioinks, in three dimensions. These 3D micro-engineered environments open new -avenues for drug screening and fundamental studies of wound healing, angiogenesis, and stem-cell niches.

1,699 citations