scispace - formally typeset
Search or ask a question
Author

Jing Zhang

Bio: Jing Zhang is an academic researcher from Australian National University. The author has contributed to research in topics: Photopolymer & Cationic polymerization. The author has an hindex of 23, co-authored 51 publications receiving 1862 citations. Previous affiliations of Jing Zhang include Beijing University of Chemical Technology & University of New South Wales.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent progress in applications of photoinitiators and sensitive photo-initiating systems under visible lights is reported, and their relative efficiencies in the photopolymerization of different monomers are exemplified and discussed.

410 citations

Journal ArticleDOI
TL;DR: In this article, the authors focused on the recent developments in LED technology, allowing the design of novel and efficient light sources for the free radical and cationic photopolymerization of various monomers, the synthesis of interpenetrating polymer networks (IPNs) or thiol-ene photopolymers, and the development of novel photoinitiators and photo-initiating systems specifically adapted for LED excitation.

304 citations

Journal ArticleDOI
TL;DR: In this paper, commercial photoinitiators and monomers/oligomers applicable for 3D printing are presented, and newly developed photo-initiator and monomer-based materials with various properties and the application in 3D bio-printing are also demonstrated.

221 citations

Journal ArticleDOI
TL;DR: In this article, seven naphthalimide derivatives with different substituents have been designed as versatile photoinitiators (PIs), and some of them when combined with an iodonium salt or an amine (and optionally chlorotriazine) are expected to exhibit an enhanced efficiency to initiate the epoxides and the free radical polymerization of acrylates under different irradiation sources.
Abstract: Seven naphthalimide derivatives (NDP1–NDP7) with different substituents have been designed as versatile photoinitiators (PIs), and some of them when combined with an iodonium salt (and optionally N-vinylcarbazole) or an amine (and optionally chlorotriazine) are expected to exhibit an enhanced efficiency to initiate the cationic polymerization of epoxides and the free radical polymerization of acrylates under different irradiation sources (i.e., the LED at 385, 395, 405, 455, or 470 nm or the polychromatic visible light from the halogen lamp). Remarkably, some studied naphthalimide derivative based photoinitiating systems (PIS) are even more efficient than the commercial type I photoinitiator bisacylphosphine oxide and the well-known camphorquinone-based systems for cationic or radical photopolymerization. A good efficiency upon a LED projector at 405 nm used in 3D printers is also found: a 3D object can be easily created through an additive process where the final object is constructed by coating down suc...

151 citations

Journal ArticleDOI
TL;DR: In this article, three copper complexes (E1, G1, and G2) with different ligands in combination with an iodonium salt and optionally another additive were used to generate radicals upon soft visible light exposure.
Abstract: Three copper complexes (E1, G1, and G2) with different ligands in combination with an iodonium salt (and optionally another additive) were used to generate radicals upon soft visible light exposure (e.g., polychromatic visible light from a halogen lamp, laser diodes at 405 and 457 nm, LEDs at 405 and 455 nm). This approach can be worthwhile and versatile to initiate free radical photopolymerization, ring-opening cationic photopolymerization, and the synthesis of interpenetrating polymer networks. The photochemical mechanisms for the production of initiating radicals are studied using cyclic voltammetry, electron spin resonance spin trapping, steady state photolysis, and laser flash photolysis techniques. The photoinitiation ability of the copper complexes based photoinitiating systems are evaluated using real-time Fourier transform infrared spectroscopy. G1 and G2 are better than the well-known camphorquinone (CQ)-based systems (i.e., TMPTA conversion = 18%, 35%, 48%, and 39% with CQ/iodonium salt, CQ/ami...

142 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment.
Abstract: Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

1,027 citations

Journal ArticleDOI
TL;DR: The historical development and current state of the art in this rapidly expanding field of research is summarized, which has become one of the key exploration areas of modern heterocyclic chemistry.
Abstract: Two-dimensionally extended, polycyclic heteroaromatic molecules (heterocyclic nanographenes) are a highly versatile class of organic materials, applicable as functional chromophores and organic semiconductors. In this Review, we discuss the rich chemistry of large heteroaromatics, focusing on their synthesis, electronic properties, and applications in materials science. This Review summarizes the historical development and current state of the art in this rapidly expanding field of research, which has become one of the key exploration areas of modern heterocyclic chemistry.

823 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of photo-CRP reactions can be found in this article, where a large number of methods are summarized and further classified into subcategories based on the specific reagents, catalysts, etc., involved.
Abstract: The use of light to mediate controlled radical polymerization has emerged as a powerful strategy for rational polymer synthesis and advanced materials fabrication. This review provides a comprehensive survey of photocontrolled, living radical polymerizations (photo-CRPs). From the perspective of mechanism, all known photo-CRPs are divided into either (1) intramolecular photochemical processes or (2) photoredox processes. Within these mechanistic regimes, a large number of methods are summarized and further classified into subcategories based on the specific reagents, catalysts, etc., involved. To provide a clear understanding of each subcategory, reaction mechanisms are discussed. In addition, applications of photo-CRP reported so far, which include surface fabrication, particle preparation, photoresponsive gel design, and continuous flow technology, are summarized. We hope this review will not only provide informative knowledge to researchers in this field but also stimulate new ideas and applications to further advance photocontrolled reactions.

738 citations

Journal ArticleDOI
20 Feb 2019
TL;DR: The field of 3D printing is continuing its rapid development in both academic and industrial research environments as mentioned in this paper, which offers flexibility over the final properties of the 3D printed materials (such as optical, chemical and mechanical properties) using versatile polymer chemistry.
Abstract: The field of 3D printing is continuing its rapid development in both academic and industrial research environments. The development of 3D printing technologies has opened new implementations in rapid prototyping, tooling, dentistry, microfluidics, biomedical devices, tissue engineering, drug delivery, etc. Among different 3D printing techniques, photopolymerization-based process (such as stereolithography and digital light processing) offers flexibility over the final properties of the 3D printed materials (such as optical, chemical, and mechanical properties) using versatile polymer chemistry. The strategy behind the 3D photopolymerization is based on using monomers/oligomers in liquid state (in the presence of photoinitiators) that can be photopolymerized (via radical or cationic mechanism) upon exposure to light source of different wavelengths (depending on the photoinitiator system). An overview of recent evolutions in the field of photopolymerization-based 3D printing and highlights of novel 3D print...

621 citations

Journal ArticleDOI
TL;DR: This review paper provides a comprehensive account of the fundamentals and applications of photoinduced electron transfer reactions in polymer synthesis, including traditional photopolymerization methods, namely free radical and cationic polymerizations, and step-growth polymerizations involving electron transfer processes are included.
Abstract: Photochemical reactions, particularly those involving photoinduced electron transfer processes, establish a substantial contribution to the modern synthetic chemistry, and the polymer community has been increasingly interested in exploiting and developing novel photochemical strategies. These reactions are efficiently utilized in almost every aspect of macromolecular architecture synthesis, involving initiation, control of the reaction kinetics and molecular structures, functionalization, and decoration, etc. Merging with polymerization techniques, photochemistry has opened up new intriguing and powerful avenues for macromolecular synthesis. Construction of various polymers with incredibly complex structures and specific control over the chain topology, as well as providing the opportunity to manipulate the reaction course through spatiotemporal control, are one of the unique abilities of such photochemical reactions. This review paper provides a comprehensive account of the fundamentals and applications ...

608 citations