scispace - formally typeset
Search or ask a question
Author

Jing Zhao

Bio: Jing Zhao is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Computer science. The author has an hindex of 55, co-authored 282 publications receiving 13256 citations. Previous affiliations of Jing Zhao include Beijing Institute of Technology & Capital Medical University.


Papers
More filters
Journal ArticleDOI
F. P. An, J. Z. Bai, A. B. Balantekin1, H. R. Band1  +271 moreInstitutions (34)
TL;DR: The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle θ(13) with a significance of 5.2 standard deviations.
Abstract: The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle θ13 with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GW_(th) reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43 000 ton–GW_(th)–day live-time exposure in 55 days, 10 416 (80 376) electron-antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is R=0.940± 0.011(stat.)±0.004(syst.). A rate-only analysis finds sin^22θ_(13)=0.092±0.016(stat.)±0.005(syst.) in a three-neutrino framework.

2,163 citations

Journal ArticleDOI
TL;DR: The results provide a snapshot of the current evidence of effectiveness for a range of health-related apps and suggest that some features improve the effectiveness of apps, such as less time consumption, user-friendly design, real-time feedback, individualized elements, detailed information, and health professional involvement.
Abstract: Background: Globally, mobile phones have achieved wide reach at an unprecedented rate, and mobile phone apps have become increasingly prevalent among users. The number of health-related apps that were published on the two leading platforms (iOS and Android) reached more than 100,000 in 2014. However, there is a lack of synthesized evidence regarding the effectiveness of mobile phone apps in changing people’s health-related behaviors. Objective: The aim was to examine the effectiveness of mobile phone apps in achieving health-related behavior change in a broader range of interventions and the quality of the reported studies. Methods: We conducted a comprehensive bibliographic search of articles on health behavior change using mobile phone apps in peer-reviewed journals published between January 1, 2010 and June 1, 2015. Databases searched included Medline, PreMedline, PsycINFO, Embase, Health Technology Assessment, Education Resource Information Center (ERIC), and Cumulative Index to Nursing and Allied Health Literature (CINAHL). Articles published in the Journal of Medical Internet Research during that same period were hand-searched on the journal’s website. Behavior change mechanisms were coded and analyzed. The quality of each included study was assessed by the Cochrane Risk of Bias Assessment Tool. Results: A total of 23 articles met the inclusion criteria, arranged under 11 themes according to their target behaviors. All studies were conducted in high-income countries. Of these, 17 studies reported statistically significant effects in the direction of targeted behavior change; 19 studies included in this analysis had a 65% or greater retention rate in the intervention group (range 60%-100%); 6 studies reported using behavior change theories with the theory of planned behavior being the most commonly used (in 3 studies). Self-monitoring was the most common behavior change technique applied (in 12 studies). The studies suggest that some features improve the effectiveness of apps, such as less time consumption, user-friendly design, real-time feedback, individualized elements, detailed information, and health professional involvement. All studies were assessed as having some risk of bias. Conclusions: Our results provide a snapshot of the current evidence of effectiveness for a range of health-related apps. Large sample, high-quality, adequately powered, randomized controlled trials are required. In light of the bias evident in the included studies, better reporting of health-related app interventions is also required. The widespread adoption of mobile phones highlights a significant opportunity to impact health behaviors globally, particularly in low- and middle-income countries. [J Med Internet Res 2016;18(11):e287]

468 citations

Journal ArticleDOI
TL;DR: A comprehensive review of various types of graphene-based strain sensors with different structures and mechanisms is given in this paper. But, the authors do not consider the use of a perfect Graphene, as perfect Gaspane is robust and has a low piezoresistive sensitivity.
Abstract: In this paper, we review various types of graphene-based strain sensors. Graphene is a monolayer of carbon atoms, which exhibits prominent electrical and mechanical properties and can be a good candidate in compact strain sensor applications. However, a perfect graphene is robust and has a low piezoresistive sensitivity. So scientists have been driven to increase the sensitivity using different kinds of methods since the first graphene-based strain sensor was reported. We give a comprehensive review of graphene-based strain sensors with different structures and mechanisms. It is obvious that graphene offers some advantages and has potential for the strain sensor application in the near future.

361 citations

Journal ArticleDOI
TL;DR: In this paper, the authors established a theoretical link between the level and variance of corporate growth options available to managers and the idiosyncratic risk of equity and found that growth options explain the trend in idiosyncratic volatility beyond alternative explanations.
Abstract: While recent studies document increasing idiosyncratic volatility over the past four decades, an explanation for this trend remains elusive. We establish a theoretical link between growth options available to managers and the idiosyncratic risk of equity. Empirically both the level and variance of corporate growth options are significantly related to idiosyncratic volatility. Accounting for growth options eliminates or reverses the trend in aggregate firm-specific risk. These results are robust for different measures of idiosyncratic volatility, different growth option proxies, across exchanges, and through time. Finally, our results suggest that growth options explain the trend in idiosyncratic volatility beyond alternative explanations.

347 citations

Journal ArticleDOI
F. P. An1, A. B. Balantekin2, H. R. Band2, W. Beriguete3  +240 moreInstitutions (39)
TL;DR: A measurement of the energy dependence of antineutrino disappearance at the Daya Bay reactor neutrino experiment is reported, supporting the three-flavor oscillation model.
Abstract: A measurement of the energy dependence of antineutrino disappearance at the Daya Bay reactor neutrino experiment is reported. Electron antineutrinos (ν¯_e) from six 2.9 GW_(th) reactors were detected with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls. Using 217 days of data, 41 589 (203 809 and 92 912) antineutrino candidates were detected in the far hall (near halls). An improved measurement of the oscillation amplitude sin^2 2θ_(13) = 0.090^(+0.008)_(−0.009) and the first direct measurement of the ν¯e mass-squared difference |Δm2ee|=(2.59^(+0.19)_(−0.20))×10^−3 eV^2 is obtained using the observed ν¯_e rates and energy spectra in a three-neutrino framework. This value of |Δm^(2)_(ee)| is consistent with |Δm^(2)_(μμ)| measured by muon neutrino disappearance, supporting the three-flavor oscillation model.

339 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations