scispace - formally typeset
Search or ask a question
Author

Jingbo Li

Bio: Jingbo Li is an academic researcher from Beijing Institute of Technology. The author has contributed to research in topics: Materials science & Band gap. The author has an hindex of 61, co-authored 403 publications receiving 17623 citations. Previous affiliations of Jingbo Li include Centre national de la recherche scientifique & University of Science and Technology Beijing.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the band offsets and heterostructures of monolayer and few-layer transition-metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) are investigated from first principles calculations.
Abstract: The band offsets and heterostructures of monolayer and few-layer transition-metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) are investigated from first principles calculations. The band alignments between different MX2 monolayers are calculated using the vacuum level as reference, and a simple model is proposed to explain the observed chemical trends. Some of the monolayers and their heterostructures show band alignments suitable for potential applications in spontaneous water splitting, photovoltaics, and optoelectronics. The strong dependence of the band offset on the number of layers also implicates a possible way of patterning quantum structures with thickness engineering.

1,422 citations

Journal ArticleDOI
TL;DR: This work investigates effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing and finds a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation.
Abstract: Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled bya-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering.

940 citations

Journal ArticleDOI
TL;DR: A new member of the family ofemiconducting transition metal dichalcogenides, rhenium disulphide (ReS2), where such variation is absent and bulk behaves as electronically and vibrationally decoupled monolayers stacked together.
Abstract: Monolayers of transition metal dichalcogenides have emerged as interesting two-dimensional materials. Here, the authors show that in a new member of this family of compounds, rhenium disulphide, the layers in the bulk are vibrationally and electronically decoupled, so that they behave almost as monolayers.

907 citations

Journal ArticleDOI
TL;DR: This work demonstrates large-area (>tens of micrometers) heterostructures of CVD-grown WS2 and MoS2 monolayers, where the interlayer interaction is externally tuned from noncoupling to strong coupling, which opens up venues to creating new material systems with rich functionalities and novel physical effects.
Abstract: Band offsets between different monolayer transition metal dichalcogenides are expected to efficiently separate charge carriers or rectify charge flow, offering a mechanism for designing atomically thin devices and probing exotic two-dimensional physics. However, developing such large-area heterostructures has been hampered by challenges in synthesis of monolayers and effectively coupling neighboring layers. Here, we demonstrate large-area (>tens of micrometers) heterostructures of CVD-grown WS2 and MoS2 monolayers, where the interlayer interaction is externally tuned from noncoupling to strong coupling. Following this trend, the luminescence spectrum of the heterostructures evolves from an additive line profile where each layer contributes independently to a new profile that is dictated by charge transfer and band normalization between the WS2 and MoS2 layers. These results and findings open up venues to creating new material systems with rich functionalities and novel physical effects.

692 citations

Journal ArticleDOI
TL;DR: Physi-sorbed O2 and/or H2O molecules electronically deplete n-type materials such as MoS2 and MoSe2, which weakens electrostatic screening that would otherwise destabilize excitons, leading to the drastic enhancement in photoluminescence.
Abstract: In the monolayer limit, transition metal dichalcogenides become direct-bandgap, light-emitting semiconductors. The quantum yield of light emission is low and extremely sensitive to the substrate used, while the underlying physics remains elusive. In this work, we report over 100 times modulation of light emission efficiency of these two-dimensional semiconductors by physical adsorption of O2 and/or H2O molecules, while inert gases do not cause such effect. The O2 and/or H2O pressure acts quantitatively as an instantaneously reversible “molecular gating” force, providing orders of magnitude broader control of carrier density and light emission than conventional electric field gating. Physi-sorbed O2 and/or H2O molecules electronically deplete n-type materials such as MoS2 and MoSe2, which weakens electrostatic screening that would otherwise destabilize excitons, leading to the drastic enhancement in photoluminescence. In p-type materials such as WSe2, the molecular physisorption results in the opposite eff...

692 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
29 Jul 2016-Science
TL;DR: Two-dimensional heterostructures with extended range of functionalities yields a range of possible applications, and spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system.
Abstract: BACKGROUND Materials by design is an appealing idea that is very hard to realize in practice. Combining the best of different ingredients in one ultimate material is a task for which we currently have no general solution. However, we do have some successful examples to draw upon: Composite materials and III-V heterostructures have revolutionized many aspects of our lives. Still, we need a general strategy to solve the problem of mixing and matching crystals with different properties, creating combinations with predetermined attributes and functionalities. ADVANCES Two-dimensional (2D) materials offer a platform that allows creation of heterostructures with a variety of properties. One-atom-thick crystals now comprise a large family of these materials, collectively covering a very broad range of properties. The first material to be included was graphene, a zero-overlap semimetal. The family of 2D crystals has grown to includes metals (e.g., NbSe 2 ), semiconductors (e.g., MoS 2 ), and insulators [e.g., hexagonal boron nitride (hBN)]. Many of these materials are stable at ambient conditions, and we have come up with strategies for handling those that are not. Surprisingly, the properties of such 2D materials are often very different from those of their 3D counterparts. Furthermore, even the study of familiar phenomena (like superconductivity or ferromagnetism) in the 2D case, where there is no long-range order, raises many thought-provoking questions. A plethora of opportunities appear when we start to combine several 2D crystals in one vertical stack. Held together by van der Waals forces (the same forces that hold layered materials together), such heterostructures allow a far greater number of combinations than any traditional growth method. As the family of 2D crystals is expanding day by day, so too is the complexity of the heterostructures that could be created with atomic precision. When stacking different crystals together, the synergetic effects become very important. In the first-order approximation, charge redistribution might occur between the neighboring (and even more distant) crystals in the stack. Neighboring crystals can also induce structural changes in each other. Furthermore, such changes can be controlled by adjusting the relative orientation between the individual elements. Such heterostructures have already led to the observation of numerous exciting physical phenomena. Thus, spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system. The possibility of positioning crystals in very close (but controlled) proximity to one another allows for the study of tunneling and drag effects. The use of semiconducting monolayers leads to the creation of optically active heterostructures. The extended range of functionalities of such heterostructures yields a range of possible applications. Now the highest-mobility graphene transistors are achieved by encapsulating graphene with hBN. Photovoltaic and light-emitting devices have been demonstrated by combining optically active semiconducting layers and graphene as transparent electrodes. OUTLOOK Currently, most 2D heterostructures are composed by direct stacking of individual monolayer flakes of different materials. Although this method allows ultimate flexibility, it is slow and cumbersome. Thus, techniques involving transfer of large-area crystals grown by chemical vapor deposition (CVD), direct growth of heterostructures by CVD or physical epitaxy, or one-step growth in solution are being developed. Currently, we are at the same level as we were with graphene 10 years ago: plenty of interesting science and unclear prospects for mass production. Given the fast progress of graphene technology over the past few years, we can expect similar advances in the production of the heterostructures, making the science and applications more achievable.

4,851 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize both the basic physics and unresolved aspects of BiFeO3 and device applications, which center on spintronics and memory devices that can be addressed both electrically and magnetically.
Abstract: BiFeO3 is perhaps the only material that is both magnetic and a strong ferroelectric at room temperature. As a result, it has had an impact on the field of multiferroics that is comparable to that of yttrium barium copper oxide (YBCO) on superconductors, with hundreds of publications devoted to it in the past few years. In this Review, we try to summarize both the basic physics and unresolved aspects of BiFeO3 (which are still being discovered with several new phase transitions reported in the past few months) and device applications, which center on spintronics and memory devices that can be addressed both electrically and magnetically.

3,526 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the methods used to synthesize transition metal dichalcogenides (TMDCs) and their properties with particular attention to their charge density wave, superconductive and topological phases, along with their applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.
Abstract: Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties. Two-dimensional transition metal dichalcogenides (TMDCs) exhibit attractive electronic and mechanical properties. In this Review, the charge density wave, superconductive and topological phases of TMCDs are discussed, along with their synthesis and applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.

3,436 citations