scispace - formally typeset
Search or ask a question
Author

Jingdong Song

Bio: Jingdong Song is an academic researcher from Chinese Center for Disease Control and Prevention. The author has contributed to research in topics: Immune system & Virus. The author has an hindex of 17, co-authored 58 publications receiving 1353 citations. Previous affiliations of Jingdong Song include Centers for Disease Control and Prevention & National Health and Family Planning Commission.


Papers
More filters
Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: It is shown that the emerging H7N9 avian influenza virus poses a potentially high risk to humans, and current seasonal vaccination could not provide protection.
Abstract: Human infection associated with a novel reassortant avian influenza H7N9 virus has recently been identified in China. A total of 132 confirmed cases and 39 deaths have been reported. Most patients presented with severe pneumonia and acute respiratory distress syndrome. Although the first epidemic has subsided, the presence of a natural reservoir and the disease severity highlight the need to evaluate its risk on human public health and to understand the possible pathogenesis mechanism. Here we show that the emerging H7N9 avian influenza virus poses a potentially high risk to humans. We discover that the H7N9 virus can bind to both avian-type (α2,3-linked sialic acid) and human-type (α2,6-linked sialic acid) receptors. It can invade epithelial cells in the human lower respiratory tract and type II pneumonocytes in alveoli, and replicated efficiently in ex vivo lung and trachea explant culture and several mammalian cell lines. In acute serum samples of H7N9-infected patients, increased levels of the chemokines and cytokines IP-10, MIG, MIP-1β, MCP-1, IL-6, IL-8 and IFN-α were detected. We note that the human population is naive to the H7N9 virus, and current seasonal vaccination could not provide protection.

339 citations

Journal ArticleDOI
01 Oct 2013-Allergy
TL;DR: B lymphocytes are an important cell population of the immune regulation; their role in the regulation of food allergy has not been fully understood yet.
Abstract: Background B lymphocytes are an important cell population of the immune regulation; their role in the regulation of food allergy has not been fully understood yet. Objective This study aims to investigate the role of a subpopulation of tolerogenic B cells (TolBC) in the generation of regulatory T cells (Treg) and in the suppression of food allergy-induced intestinal inflammation in mice. Methods The intestinal mucosa-derived CD5+ CD19+ CX3CR1+ TolBCs were characterized by flow cytometry; a mouse model of intestinal T helper (Th)2 inflammation was established to assess the immune regulatory role of this subpopulation of TolBCs. Results A subpopulation of CD5+ CD19+ CX3CR1+ B cells was detected in the mouse intestinal mucosa. The cells also expressed transforming growth factor (TGF)-β and carried integrin alpha v beta 6 (αvβ6). Exposure to recombinant αvβ6 and anti-IgM antibody induced naive B cells to differentiate into the TGF-β-producing TolBCs. Coculturing this subpopulation of TolBCs with Th0 cells generated CD4+ CD25+ Foxp3+ Tregs. Adoptive transfer with the TolBCs markedly suppressed the food allergy-induced intestinal Th2 pattern inflammation in mice. Conclusions CD5+ CD19+ CX3CR1+ TolBCs are capable of inducing Tregs in the intestine and suppress food allergy-related Th2 pattern inflammation in mice.

61 citations

Journal ArticleDOI
TL;DR: The predominant circulating genotype of NoV infections in Beijing is GII.4, but the dominant strains of this virus responsible for gastroenteritis epidemics are evolving rapidly, suggesting a global surveillance network may be needed to identify trends in molecular evolution of NoVs for prevention of future epidemics.

45 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: It is shown that SARS-CoV-2 is not a laboratory construct or a purposefully manipulated virus, and scenarios by which they could have arisen are discussed.
Abstract: SARS-CoV-2 is the seventh coronavirus known to infect humans; SARSCoV, MERS-CoV and SARS-CoV-2 can cause severe disease, whereas HKU1, NL63, OC43 and 229E are associated with mild symptoms6. Here we review what can be deduced about the origin of SARS-CoV-2 from comparative analysis of genomic data. We offer a perspective on the notable features of the SARS-CoV-2 genome and discuss scenarios by which they could have arisen. Our analyses clearly show that SARS-CoV-2 is not a laboratory construct or a purposefully manipulated virus.

3,893 citations

Journal ArticleDOI
14 May 2020-Cell
TL;DR: The crystal structure of the C-terminal domain of SARS-CoV-2 (SARS- coV- 2-CTD) spike (S) protein in complex with human ACE2 (hACE2) is presented, which reveals a hACE2-binding mode similar overall to that observed for SARS -CoV.

2,334 citations