scispace - formally typeset
Search or ask a question
Author

Jingjing Niu

Bio: Jingjing Niu is an academic researcher from Peking University. The author has contributed to research in topics: Graphene & Qubit. The author has an hindex of 13, co-authored 35 publications receiving 1178 citations. Previous affiliations of Jingjing Niu include Southern University of Science and Technology & China Academy of Engineering Physics.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the growth of a single-crystal graphene film of 5 × 50 cm2 dimension with > 99% ultra-highly oriented grains was achieved by using a temperature gradient-driven annealing technique.
Abstract: A foundation of the modern technology that uses single-crystal silicon has been the growth of high-quality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-area high-quality (ideally of single-crystal) material will be enabling. Since the first growth on copper foil a decade ago, inch-sized single-crystal graphene has been achieved. We present here the growth, in 20 min, of a graphene film of (5 × 50) cm2 dimension with >99% ultra-highly oriented grains. This growth was achieved by: (1) synthesis of metre-sized single-crystal Cu(1 1 1) foil as substrate; (2) epitaxial growth of graphene islands on the Cu(1 1 1) surface; (3) seamless merging of such graphene islands into a graphene film with high single crystallinity and (4) the ultrafast growth of graphene film. These achievements were realized by a temperature-gradient-driven annealing technique to produce single-crystal Cu(1 1 1) from industrial polycrystalline Cu foil and the marvellous effects of a continuous oxygen supply from an adjacent oxide. The as-synthesized graphene film, with very few misoriented grains (if any), has a mobility up to ∼23,000 cm2 V−1 s−1 at 4 K and room temperature sheet resistance of ∼230 Ω/□. It is very likely that this approach can be scaled up to achieve exceptionally large and high-quality graphene films with single crystallinity, and thus realize various industrial-level applications at a low cost.

411 citations

Journal ArticleDOI
TL;DR: A facile chemical vapor deposition route is reported for direct production of crystalline VS2 nanosheets with sub-10 nm thicknesses and domain sizes of tens of micrometers, providing fresh insights into the delicate structure-property relationship and the broad application prospects of such metallic 2D materials.
Abstract: Nanothick metallic transition metal dichalcogenides such as VS2 are essential building blocks for constructing next-generation electronic and energy-storage applications, as well as for exploring unique physical issues associated with the dimensionality effect. However, such two-dimensional (2D) layered materials have yet to be achieved through either mechanical exfoliation or bottom-up synthesis. Herein, we report a facile chemical vapor deposition route for direct production of crystalline VS2 nanosheets with sub-10 nm thicknesses and domain sizes of tens of micrometers. The obtained nanosheets feature spontaneous superlattice periodicities and excellent electrical conductivities (∼3 × 103 S cm–1), which has enabled a variety of applications such as contact electrodes for monolayer MoS2 with contact resistances of ∼1/4 to that of Ni/Au metals, and as supercapacitor electrodes in aqueous electrolytes showing specific capacitances as high as 8.6 × 102 F g–1. This work provides fresh insights into the deli...

215 citations

Journal ArticleDOI
TL;DR: The synthesized 2D metallic 1T-VSe2 nanosheets should serve as good research platforms for the detecting novel many-body states and open a new path for the synthesis and property investigations of nanoscale-thickness 2D MTMDs crystals.
Abstract: 2D metallic transition-metal dichalcogenides (MTMDs) have recently emerged as a new class of materials for the engineering of novel electronic phases, 2D superconductors, magnets, as well as novel electronic applications. However, the mechanical exfoliation route is predominantly used to obtain such metallic 2D flakes, but the batch production remains challenging. Herein, the van der Waals epitaxial growth of monocrystalline, 1T-phase, few-layer metallic VSe2 nanosheets on an atomically flat mica substrate via a "one-step" chemical vapor deposition method is reported. The thickness of the VSe2 nanosheets is precisely tuned from several nanometers to several tenths of nanometers. More significantly, the 2D VSe2 single crystals are found to present an excellent metallic feature, as evidenced by the extra-high electrical conductivity of up to 106 S m-1 , 1-4 orders of magnitude higher than that of various conductive 2D materials. The thickness-dependent charge-density-wave phase transitions are also examined through low-temperature transport measurements, which reveal that the synthesized 2D metallic 1T-VSe2 nanosheets should serve as good research platforms for the detecting novel many-body states. These results open a new path for the synthesis and property investigations of nanoscale-thickness 2D MTMDs crystals.

198 citations

Journal ArticleDOI
TL;DR: It is demonstrated that fluorine can play a crucial role in tuning the growth kinetics of three representative two-dimensional materials (graphene, hexagonal boron nitride and WS2) by releasing it from the decomposition of a metal fluoride sheet.
Abstract: Two-dimensional materials show a variety of promising properties, and controlling their growth is an important aspect for practical applications. To this end, active species such as hydrogen and oxygen are commonly introduced into reactors to promote the synthesis of two-dimensional materials with specific characteristics. Here, we demonstrate that fluorine can play a crucial role in tuning the growth kinetics of three representative two-dimensional materials (graphene, hexagonal boron nitride and WS2). When growing graphene by chemical vapour deposition on a copper foil, fluorine released from the decomposition of a metal fluoride placed near the copper foil greatly accelerates the growth of the graphene (up to a rate of ~200 μm s−1). Theoretical calculations show that it does so by promoting decomposition of the methane feedstock, which converts the endothermic growth process to an exothermic one. We further show that the presence of fluorine also accelerates the growth of two-dimensional hexagonal boron nitride and WS2. Active species such as hydrogen and oxygen are commonly introduced into reactors to control the growth of two-dimensional materials. Now, the presence of fluorine—released by the decomposition of a metal fluoride sheet—has also been shown to modulate the growth kinetics of graphene, h-BN and WS2.

77 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review of the challenges in the CVD growth of 2D materials highlights recent advances in the controlled growth of single crystal 2Dmaterials, with an emphasis on semiconducting transition metal dichalcogenides.
Abstract: Two-dimensional (2D) materials have attracted increasing research interest because of the abundant choice of materials with diverse and tunable electronic, optical, and chemical properties. Moreover, 2D material based heterostructures combining several individual 2D materials provide unique platforms to create an almost infinite number of materials and show exotic physical phenomena as well as new properties and applications. To achieve these high expectations, methods for the scalable preparation of 2D materials and 2D heterostructures of high quality and low cost must be developed. Chemical vapor deposition (CVD) is a powerful method which may meet the above requirements, and has been extensively used to grow 2D materials and their heterostructures in recent years, despite several challenges remaining. In this review of the challenges in the CVD growth of 2D materials, we highlight recent advances in the controlled growth of single crystal 2D materials, with an emphasis on semiconducting transition meta...

893 citations

Journal Article
TL;DR: In this paper, an ionic field effect transistor (termed an iFET) is described, in which gate-controlled Li ion intercalation modulates the material properties of layered crystals of 1T-TaS2.
Abstract: The ability to tune material properties using gating by electric fields is at the heart of modern electronic technology. It is also a driving force behind recent advances in two-dimensional systems, such as the observation of gate electric-field-induced superconductivity and metal-insulator transitions. Here, we describe an ionic field-effect transistor (termed an iFET), in which gate-controlled Li ion intercalation modulates the material properties of layered crystals of 1T-TaS2. The strong charge doping induced by the tunable ion intercalation alters the energetics of various charge-ordered states in 1T-TaS2 and produces a series of phase transitions in thin-flake samples with reduced dimensionality. We find that the charge-density wave states in 1T-TaS2 collapse in the two-dimensional limit at critical thicknesses. Meanwhile, at low temperatures, the ionic gating induces multiple phase transitions from Mott-insulator to metal in 1T-TaS2 thin flakes, with five orders of magnitude modulation in resistance, and superconductivity emerges in a textured charge-density wave state induced by ionic gating. Our method of gate-controlled intercalation opens up possibilities in searching for novel states of matter in the extreme charge-carrier-concentration limit.

437 citations

Journal ArticleDOI
TL;DR: The state-of-the-art progress on interfacial synthesis strategies and address their advancements in the structural, morphological, and crystalline control by the direction of the arrangement of the molecules or precursors at a confined 2D space are summarized.
Abstract: The discovery of graphene one decade ago has triggered enormous interest in developing two-dimensional materials (2DMs)—that is 2D allotropes of various elements or compounds (consisting of two or more covalently bonded elements) or molecular frameworks with periodic structures. At present, various synthesis strategies have been exploited to produce 2DMs, such as top-down exfoliation and bottom-up chemical vapor deposition and solution synthesis methods. In this review article, we will highlight the interfacial roles toward the controlled synthesis of inorganic and organic 2DMs with varied structural features. We will summarize the state-of-the-art progress on interfacial synthesis strategies and address their advancements in the structural, morphological, and crystalline control by the direction of the arrangement of the molecules or precursors at a confined 2D space. First, we will provide an overview of the interfaces and introduce their advantages and uniqueness for the synthesis of 2DMs, followed by ...

431 citations

Journal ArticleDOI
06 Jun 2019-Nature
TL;DR: The epitaxial growth of large single-crystal hexagonal boron nitride monolayers on low-symmetry copper foils is demonstrated and is expected to facilitate the wide application of 2D devices and lead to the epitaxials growth of broad non-centrosymmetric 2D materials, such as various transition-metal dichalcogenides20–23, to produce large single crystals.
Abstract: The development of two-dimensional (2D) materials has opened up possibilities for their application in electronics, optoelectronics and photovoltaics, because they can provide devices with smaller size, higher speed and additional functionalities compared with conventional silicon-based devices1. The ability to grow large, high-quality single crystals for 2D components—that is, conductors, semiconductors and insulators—is essential for the industrial application of 2D devices2–4. Atom-layered hexagonal boron nitride (hBN), with its excellent stability, flat surface and large bandgap, has been reported to be the best 2D insulator5–12. However, the size of 2D hBN single crystals is typically limited to less than one millimetre13–18, mainly because of difficulties in the growth of such crystals; these include excessive nucleation, which precludes growth from a single nucleus to large single crystals, and the threefold symmetry of the hBN lattice, which leads to antiparallel domains and twin boundaries on most substrates19. Here we report the epitaxial growth of a 100-square-centimetre single-crystal hBN monolayer on a low-symmetry Cu (110) vicinal surface, obtained by annealing an industrial copper foil. Structural characterizations and theoretical calculations indicate that epitaxial growth was achieved by the coupling of Cu step edges with hBN zigzag edges, which breaks the equivalence of antiparallel hBN domains, enabling unidirectional domain alignment better than 99 per cent. The growth kinetics, unidirectional alignment and seamless stitching of the hBN domains are unambiguously demonstrated using centimetre- to atomic-scale characterization techniques. Our findings are expected to facilitate the wide application of 2D devices and lead to the epitaxial growth of broad non-centrosymmetric 2D materials, such as various transition-metal dichalcogenides20–23, to produce large single crystals. The epitaxial growth of large single-crystal hexagonal boron nitride monolayers on low-symmetry copper foils is demonstrated.

363 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported the successful preparation of a purely honeycomb, graphene-like borophene, by using an Al(1/1/ε) surface as the substrate and molecular beam epitaxy (MBE) growth in ultrahigh vacuum.
Abstract: We report the successful preparation of a purely honeycomb, graphene-like borophene, by using an Al(1 1 1) surface as the substrate and molecular beam epitaxy (MBE) growth in ultrahigh vacuum. Scanning tunneling microscopy (STM) images reveal perfect monolayer borophene with planar, non-buckled honeycomb lattice similar as graphene. Theoretical calculations show that the honeycomb borophene on Al(1 1 1) is energetically stable. Remarkably, nearly one electron charge is transferred to each boron atom from the Al(1 1 1) substrate and stabilizes the honeycomb borophene structure, in contrast to the negligible charge transfer in case of borophene/Ag(1 1 1). The existence of honeycomb 2D allotrope is important to the basic understanding of boron chemistry, and it also provides an ideal platform for fabricating boron-based materials with intriguing electronic properties such as Dirac states.

358 citations