scispace - formally typeset
Search or ask a question
Author

Jingsong Yang

Bio: Jingsong Yang is an academic researcher from GlaxoSmithKline. The author has contributed to research in topics: Kinase & Aurora B kinase. The author has an hindex of 18, co-authored 33 publications receiving 2182 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: GSK1120212 combines high potency, selectivity, and long circulating half-life, offering promise for successfully targeting the narrow therapeutic window anticipated for clinical MEK inhibitors.
Abstract: Purpose: Despite their preclinical promise, previous MEK inhibitors have shown little benefit for patients. This likely reflects the narrow therapeutic window for MEK inhibitors due to the essential role of the P42/44 MAPK pathway in many nontumor tissues. GSK1120212 is a potent and selective allosteric inhibitor of the MEK1 and MEK2 (MEK1/2) enzymes with promising antitumor activity in a phase I clinical trial (ASCO 2010). Our studies characterize GSK11202129 enzymatic, cellular, and in vivo activities, describing its unusually long circulating half-life. Experimental Design: Enzymatic studies were conducted to determine GSK1120212 inhibition of recombinant MEK, following or preceding RAF kinase activation. Cellular studies examined GSK1120212 inhibition of ERK1 and 2 phosphorylation (p-ERK1/2) as well as MEK1/2 phosphorylation and activation. Further studies explored the sensitivity of cancer cell lines, and drug pharmacokinetics and efficacy in multiple tumor xenograft models. Results: In enzymatic and cellular studies, GSK1120212 inhibits MEK1/2 kinase activity and prevents Raf-dependent MEK phosphorylation (S217 for MEK1), producing prolonged p-ERK1/2 inhibition. Potent cell growth inhibition was evident in most tumor lines with mutant BRAF or Ras. In xenografted tumor models, GSK1120212 orally dosed once daily had a long circulating half-life and sustained suppression of p-ERK1/2 for more than 24 hours; GSK1120212 also reduced tumor Ki67, increased p27 Kip1/CDKN1B , and caused tumor growth inhibition in multiple tumor models. The largest antitumor effect was among tumors harboring mutant BRAF or Ras. Conclusions: GSK1120212 combines high potency, selectivity, and long circulating half-life, offering promise for successfully targeting the narrow therapeutic window anticipated for clinical MEK inhibitors. Clin Cancer Res; 17(5); 989–1000. ©2011 AACR .

533 citations

Journal ArticleDOI
07 Nov 2018-Nature
TL;DR: A linking strategy to synergize the effect of two symmetry-related amidobenzimidazole-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function is developed, representing a milestone in the rapidly growing field of immune-modifying cancer therapies.
Abstract: Stimulator of interferon genes (STING) is a receptor in the endoplasmic reticulum that propagates innate immune sensing of cytosolic pathogen-derived and self DNA1. The development of compounds that modulate STING has recently been the focus of intense research for the treatment of cancer and infectious diseases and as vaccine adjuvants2. To our knowledge, current efforts are focused on the development of modified cyclic dinucleotides that mimic the endogenous STING ligand cGAMP; these have progressed into clinical trials in patients with solid accessible tumours amenable to intratumoral delivery3. Here we report the discovery of a small molecule STING agonist that is not a cyclic dinucleotide and is systemically efficacious for treating tumours in mice. We developed a linking strategy to synergize the effect of two symmetry-related amidobenzimidazole (ABZI)-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function. Intravenous administration of a diABZI STING agonist to immunocompetent mice with established syngeneic colon tumours elicited strong anti-tumour activity, with complete and lasting regression of tumours. Our findings represent a milestone in the rapidly growing field of immune-modifying cancer therapies.

395 citations

Journal ArticleDOI
TL;DR: Findings support the potential for synergy between targeted therapies dabrafenib and trametinib and immunomodulatory antibodies in vivo and clinical exploration of such combination regimens is under way.
Abstract: Purpose: To assess the immunological effects of dabrafenib and trametinib in vitro and to test whether trametinib potentiates or antagonizes the activity of immunomodulatory antibodies in vivo. Experimental Design: Immune effects of dabrafenib and trametinib were evaluated in human CD4+ and CD8+ T cells from healthy volunteers, a panel of human tumor cell lines, and in vivo using a CT26 mouse model. Results: Dabrafenib enhanced pERK expression levels and did not suppress human CD4+ or CD8+ T cell function. Trametinib reduced pERK levels, and resulted in partial/transient inhibition of T cell proliferation/expression of a cytokine and immunomodulatory gene subset, which is context dependent. Trametinib effects were partially offset by adding dabrafenib. Dabrafenib and trametinib in BRAF V600E/K, and trametinib in BRAF wild type tumor cells induced apoptosis markers, up-regulated HLA molecule expression, and down-regulated certain immunosuppressive factors such as PD-L1, IL1, IL8, NT5E, and VEGFA. PD-L1 expression in tumor cells was up-regulated after acquiring resistance to BRAF inhibition in vitro. Combinations of trametinib with immunomodulators targeting PD1, PD-L1, or CTLA4 in a CT26 model were more efficacious than any single agent. The combination of trametinib with anti-PD1 increased tumor-infiltrating CD8+ T cells in CT26 tumors. Concurrent or phased sequential treatment, defined as trametinib lead-in followed by trametinib plus anti-PD1 antibody, demonstrated superior efficacy compared with anti-PD1 antibody followed by anti-PD1 plus trametinib. Conclusion: These findings support the potential for synergy between targeted therapies dabrafenib and trametinib and immunomodulatory antibodies. Clinical exploration of such combination regimens is under way.

351 citations

Journal ArticleDOI
03 Jul 2013-PLOS ONE
TL;DR: It was shown that concomitant administration of BRAF and MEK inhibitors abrogated paradoxical BRAF inhibitor-induced MAPK signalling in cells, reduced the occurrence of skin lesions in rats, and enhanced the inhibition of human tumor xenograft growth in mouse models.
Abstract: Mitogen-Activated Protein Kinase (MAPK) pathway activation has been implicated in many types of human cancer. BRAF mutations that constitutively activate MAPK signalling and bypass the need for upstream stimuli occur with high prevalence in melanoma, colorectal carcinoma, ovarian cancer, papillary thyroid carcinoma, and cholangiocarcinoma. In this report we characterize the novel, potent, and selective BRAF inhibitor, dabrafenib (GSK2118436). Cellular inhibition of BRAFV600E kinase activity by dabrafenib resulted in decreased MEK and ERK phosphorylation and inhibition of cell proliferation through an initial G1 cell cycle arrest, followed by cell death. In a BRAFV600E-containing xenograft model of human melanoma, orally administered dabrafenib inhibited ERK activation, downregulated Ki67, and upregulated p27, leading to tumor growth inhibition. However, as reported for other BRAF inhibitors, dabrafenib also induced MAPK pathway activation in wild-type BRAF cells through CRAF (RAF1) signalling, potentially explaining the squamous cell carcinomas and keratoacanthomas arising in patients treated with BRAF inhibitors. In addressing this issue, we showed that concomitant administration of BRAF and MEK inhibitors abrogated paradoxical BRAF inhibitor-induced MAPK signalling in cells, reduced the occurrence of skin lesions in rats, and enhanced the inhibition of human tumor xenograft growth in mouse models. Taken together, our findings offer preclinical proof of concept for dabrafenib as a specific and highly efficacious BRAF inhibitor and provide evidence for its potential clinical benefits when used in combination with a MEK inhibitor.

175 citations

Journal ArticleDOI
TL;DR: GSK2830371 is the first orally active, allosteric inhibitor of Wip1 phosphatase, an oncogenic phosphat enzyme common to multiple cancers and results in expected pharmacodynamic effects and causes inhibition of lymphoma xenograft growth.
Abstract: Although therapeutic interventions of signal-transduction cascades with targeted kinase inhibitors are a well-established strategy, drug-discovery efforts to identify targeted phosphatase inhibitors have proven challenging. Herein we report a series of allosteric, small-molecule inhibitors of wild-type p53-induced phosphatase (Wip1), an oncogenic phosphatase common to multiple cancers. Compound binding to Wip1 is dependent on a 'flap' subdomain located near the Wip1 catalytic site that renders Wip1 structurally divergent from other members of the protein phosphatase 2C (PP2C) family and that thereby confers selectivity for Wip1 over other phosphatases. Treatment of tumor cells with the inhibitor GSK2830371 increases phosphorylation of Wip1 substrates and causes growth inhibition in both hematopoietic tumor cell lines and Wip1-amplified breast tumor cells harboring wild-type TP53. Oral administration of Wip1 inhibitors in mice results in expected pharmacodynamic effects and causes inhibition of lymphoma xenograft growth. To our knowledge, GSK2830371 is the first orally active, allosteric inhibitor of Wip1 phosphatase.

168 citations


Cited by
More filters
Journal ArticleDOI
Daniel S. Chen1, Ira Mellman1
19 Jan 2017-Nature
TL;DR: Clinical studies are beginning to define these factors as immune profiles that can predict responses to immunotherapy, suggesting that a broader view of cancer immunity is required.
Abstract: Immunotherapy is proving to be an effective therapeutic approach in a variety of cancers. But despite the clinical success of antibodies against the immune regulators CTLA4 and PD-L1/PD-1, only a subset of people exhibit durable responses, suggesting that a broader view of cancer immunity is required. Immunity is influenced by a complex set of tumour, host and environmental factors that govern the strength and timing of the anticancer response. Clinical studies are beginning to define these factors as immune profiles that can predict responses to immunotherapy. In the context of the cancer-immunity cycle, such factors combine to represent the inherent immunological status - or 'cancer-immune set point' - of an individual.

3,145 citations

Journal ArticleDOI
TL;DR: Tametinib, as compared with chemotherapy, improved rates of progression-free and overall survival among patients who had metastatic melanoma with a BRAF V600E or V600K mutation.
Abstract: Background Activating mutations in serine–threonine protein kinase B-RAF (BRAF) are found in 50% of patients with advanced melanoma Selective BRAF-inhibitor therapy improves survival, as compared with chemotherapy, but responses are often short-lived In previous trials, MEK inhibition appeared to be promising in this population Methods In this phase 3 open-label trial, we randomly assigned 322 patients who had metastatic melanoma with a V600E or V600K BRAF mutation to receive either trametinib, an oral selective MEK inhibitor, or chemotherapy in a 2:1 ratio Patients received trametinib (2 mg orally) once daily or intravenous dacarbazine (1000 mg per square meter of body-surface area) or paclitaxel (175 mg per square meter) every 3 weeks Patients in the chemotherapy group who had disease progression were permitted to cross over to receive trametinib Progression-free survival was the primary end point, and overall survival was a secondary end point Results Median progression-free survival was 48 months in the trametinib group and 15 months in the chemotherapy group (hazard ratio for disease progression or death in the trametinib group, 045; 95% confidence interval [CI], 033 to 063; P<0001) At 6 months, the rate of overall survival was 81% in the trametinib group and 67% in the chemotherapy group despite crossover (hazard ratio for death, 054; 95% CI, 032 to 092; P = 001) Rash, diarrhea, and peripheral edema were the most common toxic effects in the trametinib group and were managed with dose interruption and dose reduction; asymptomatic and reversible reduction in the cardiac ejection fraction and ocular toxic effects occurred infrequently Secondary skin neoplasms were not observed Conclusions Trametinib, as compared with chemotherapy, improved rates of progression-free and overall survival among patients who had metastatic melanoma with a BRAF V600E or V600K mutation (Funded by GlaxoSmithKline; METRIC ClinicalTrials gov number, NCT01245062)

1,884 citations

Journal ArticleDOI
TL;DR: This Review summarizes the progress and the promise of five key approaches for the development of RAS-inhibitory molecules and addresses the issue of whether blocking RAS membrane association is a viable approach.
Abstract: Despite more than three decades of intensive effort, no effective pharmacological inhibitors of the RAS oncoproteins have reached the clinic, prompting the widely held perception that RAS proteins are 'undruggable'. However, recent data from the laboratory and the clinic have renewed our hope for the development of RAS-inhibitory molecules. In this Review, we summarize the progress and the promise of five key approaches. Firstly, we focus on the prospects of using direct inhibitors of RAS. Secondly, we address the issue of whether blocking RAS membrane association is a viable approach. Thirdly, we assess the status of targeting RAS downstream effector signalling, which is arguably the most favourable current approach. Fourthly, we address whether the search for synthetic lethal interactors of mutant RAS still holds promise. Finally, RAS-mediated changes in cell metabolism have recently been described and we discuss whether these changes could be exploited for new therapeutic directions. We conclude with perspectives on how additional complexities, which are not yet fully understood, may affect each of these approaches.

1,453 citations

Journal ArticleDOI
20 Mar 2018-Immunity
TL;DR: The roles of the PD-1-PD-L1 axis in cancer is reviewed, focusing on recent findings on the mechanisms that regulate PD-L 1 expression at the transcriptional, posttranscriptional, and protein level, to inform the design of more precise and effective cancer immune checkpoint therapies.

1,211 citations

Journal ArticleDOI
30 Oct 2019-Nature
TL;DR: Treatment of KRASG 12C-mutant cancer cells with the KRAS(G12C) inhibitor AMG 510 leads to durable response in mice, and anti-tumour activity in patients suggests that AMG510 could be effective in patients for whom treatments are currently lacking.
Abstract: KRAS is the most frequently mutated oncogene in cancer and encodes a key signalling protein in tumours1,2. The KRAS(G12C) mutant has a cysteine residue that has been exploited to design covalent inhibitors that have promising preclinical activity3–5. Here we optimized a series of inhibitors, using novel binding interactions to markedly enhance their potency and selectivity. Our efforts have led to the discovery of AMG 510, which is, to our knowledge, the first KRAS(G12C) inhibitor in clinical development. In preclinical analyses, treatment with AMG 510 led to the regression of KRASG12C tumours and improved the anti-tumour efficacy of chemotherapy and targeted agents. In immune-competent mice, treatment with AMG 510 resulted in a pro-inflammatory tumour microenvironment and produced durable cures alone as well as in combination with immune-checkpoint inhibitors. Cured mice rejected the growth of isogenic KRASG12D tumours, which suggests adaptive immunity against shared antigens. Furthermore, in clinical trials, AMG 510 demonstrated anti-tumour activity in the first dosing cohorts and represents a potentially transformative therapy for patients for whom effective treatments are lacking. Treatment of KRASG12C-mutant cancer cells with the KRAS(G12C) inhibitor AMG 510 leads to durable response in mice, and anti-tumour activity in patients suggests that AMG 510 could be effective in patients for whom treatments are currently lacking.

1,191 citations