scispace - formally typeset
Search or ask a question
Author

Jingyan Song

Bio: Jingyan Song is an academic researcher from Tsinghua University. The author has contributed to research in topics: Attitude control & Mobile robot. The author has an hindex of 16, co-authored 88 publications receiving 975 citations. Previous affiliations of Jingyan Song include The Chinese University of Hong Kong.


Papers
More filters
Proceedings ArticleDOI
Guoqiang Yu1, Jianming Hu1, Changshui Zhang1, Like Zhuang1, Jingyan Song1 
09 Jun 2003
TL;DR: Gaussian Mixture Model (GMM), whose parameters are estimated with Expectation Maximum (EM) algorithm, is applied to approximate the transition probability and the representation of the optimal forecasting is given in terms of the parameters in GMM.
Abstract: In this paper, the traffic flow is modeled as a high order Markov chain. And the transition probability from one state to the other state describes, given the current and recent values of the traffic flow, what the future value will be. Under the criteria of minimum mean square error, the optimal prediction is given as the conditional expectation according to the transition probability. However, in general, the transition probability is not known beforehand and we even don't know its form exactly. Gaussian Mixture Model (GMM), whose parameters are estimated with Expectation Maximum (EM) algorithm, is applied to approximate the transition probability. Then the representation of the optimal forecasting is given in terms of the parameters in GMM. A case study with real traffic data obtained from UTC/SCOOT system in Beijing shows the applicability and effectiveness of our proposed model.

98 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed an adaptive sliding mode fault-tolerant control scheme based on offline multibody dynamics for the uncertain Stewart platform under loss of actuator effectiveness.
Abstract: In this paper, we propose a novel adaptive sliding mode fault-tolerant control scheme based on offline multibody dynamics for the uncertain Stewart platform under loss of actuator effectiveness. The asymptotic stability is analyzed by Lyapunov method in the presence of friction, unmodeled dynamics, environmental disturbances, and even the unpredictable actuator faults. To cope with the nonlinear coupling and various properties of freedom directions, the offline nominal multibody dynamics are employed to design the initial upper bound of uncertainties and to realize the dynamic compensation, which achieves high online computational efficiency and significantly improves the characteristics of the six degree-of-freedom (DOF) directions. We also introduce a novel adaptive updating law to adjust the control torque based on the real-time position tracking errors, which alleviates the chattering phenomenon of the sliding mode controller. Finally, the fault-free and faulty conditions are analyzed to corroborate the advantages of the proposed control scheme in comparison with the nominal sliding mode control scheme.

73 citations

Journal ArticleDOI
TL;DR: A complex recurrent neural network is formulated and applied to compute the complex matrix inverse in real time to extend recent works which apply real recurrent networks for real-valued matrix inversion.

55 citations

Journal ArticleDOI
TL;DR: The simulation results show that compared with three traditional algorithms based on different architectures, the new hybrid navigation algorithm proposed in this paper performs more reliable in terms of escaping from traps, resolving conflicts between layers and decreasing the computational time for avoiding time out of the control cycle.
Abstract: Focusing on the navigation problem of mobile robots in environments with incomplete knowledge, a new hybrid navigation algorithm is proposed. The novel system architecture in the proposed algorithm is the main contribution of this paper. Unlike most existing hybrid navigation systems whose deliberative layers usually play the dominant role while the reactive layers are only simple executors, a more independent reactive layer that can guarantee convergence without the assistance of a deliberative layer is pursued in the proposed architecture, which brings two benefits. First, the burden of the deliberative layer is released, which is beneficial to guaranteeing real-time property and decreasing resource requirement. Second, some possible layer conflicts in the traditional architecture can be resolved, which improves the system stability. The convergence of the new algorithm has been proved. The simulation results show that compared with three traditional algorithms based on different architectures, the new hybrid navigation algorithm proposed in this paper performs more reliable in terms of escaping from traps, resolving conflicts between layers and decreasing the computational time for avoiding time out of the control cycle. The experiments on a real robot further verify the validity and applicability of the new algorithm.

54 citations

Journal ArticleDOI
TL;DR: An improved wall‐following approach for real‐time application in mobile robots that greatly weakens the blindness of decision making of robot and it is very helpful to select appropriate behaviors facing to the changeable situation.
Abstract: – The purpose of this paper is to focus on the local minima issue encountered in motion planning by the artificial potential field (APF) method, investigate the currently existing approaches and analyze four types of previous methods. Based on the conclusions of analysis, this paper presents an improved wall‐following approach for real‐time application in mobile robots., – In the proposed method, new switching conditions among various behaviors are reasonably designed in order to guarantee the reliability and the generality of the method. In addition, path memory is incorporated in this method to enhance the robot's cognition capability to the environment. Therefore, the new method greatly weakens the blindness of decision making of robot and it is very helpful to select appropriate behaviors facing to the changeable situation. Comparing with the previous methods which are normally considering specific obstacles, the effectiveness of this proposed method for the environment with convex polygon‐shaped obstacles has been theoretically proved. The simulation and experimental results further demonstrate that the proposed method is adaptable for the environment with convex polygon‐shaped obstacles or non‐convex polygon‐shaped obstacles. It has more widely generality and adaptiveness than other existed methods in complicated unknown environment., – The proposed method can effectively realize real time motion planning with high reliability and generality. The cognition capability of mobile robot to the environment can be improved in order to adapt to the changeable situation. The proposed method can be suitable to more complex unknown environment. It is more applicable for actual environment comparing with other traditional APF methods., – This paper has widely investigated the currently existed approaches and analyzes deeply on four types of traditional APF methods adopted for real time motion planning in unknown environment with simulation works. Based on the conclusions of analysis, this paper presents an improved wall‐following approach. The proposed method can realize real time motion planning considering more complex environment with high reliability and generality. The simulation and experimental results further demonstrate that the proposed method is adaptable for the environment with convex polygon‐shaped obstacles or non‐convex polygon‐shaped obstacles. It has more widely generality and adaptiveness than other existed methods in complicated unknown environment.

53 citations


Cited by
More filters
Journal ArticleDOI

3,152 citations

Book
22 Jun 2009
TL;DR: This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling.
Abstract: A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.

2,735 citations

Journal ArticleDOI
TL;DR: It is presented that MTL can improve the generalization performance of shared tasks and a grouping method based on the weights in the top layer to make MTL more effective is proposed to take full advantage of weight sharing in the deep architecture.
Abstract: Traffic flow prediction is a fundamental problem in transportation modeling and management. Many existing approaches fail to provide favorable results due to being: 1) shallow in architecture; 2) hand engineered in features; and 3) separate in learning. In this paper we propose a deep architecture that consists of two parts, i.e., a deep belief network (DBN) at the bottom and a multitask regression layer at the top. A DBN is employed here for unsupervised feature learning. It can learn effective features for traffic flow prediction in an unsupervised fashion, which has been examined and found to be effective for many areas such as image and audio classification. To the best of our knowledge, this is the first paper that applies the deep learning approach to transportation research. To incorporate multitask learning (MTL) in our deep architecture, a multitask regression layer is used above the DBN for supervised prediction. We further investigate homogeneous MTL and heterogeneous MTL for traffic flow prediction. To take full advantage of weight sharing in our deep architecture, we propose a grouping method based on the weights in the top layer to make MTL more effective. Experiments on transportation data sets show good performance of our deep architecture. Abundant experiments show that our approach achieved close to 5% improvements over the state of the art. It is also presented that MTL can improve the generalization performance of shared tasks. These positive results demonstrate that deep learning and MTL are promising in transportation research.

940 citations

Journal ArticleDOI
TL;DR: An extensive survey of CI applications to various problems in WSNs from various research areas and publication venues is presented and a general evaluation of CI algorithms is presented, which will serve as a guide for using CI algorithms for W SNs.
Abstract: Wireless sensor networks (WSNs) are networks of distributed autonomous devices that can sense or monitor physical or environmental conditions cooperatively. WSNs face many challenges, mainly caused by communication failures, storage and computational constraints and limited power supply. Paradigms of computational intelligence (CI) have been successfully used in recent years to address various challenges such as data aggregation and fusion, energy aware routing, task scheduling, security, optimal deployment and localization. CI provides adaptive mechanisms that exhibit intelligent behavior in complex and dynamic environments like WSNs. CI brings about flexibility, autonomous behavior, and robustness against topology changes, communication failures and scenario changes. However, WSN developers are usually not or not completely aware of the potential CI algorithms offer. On the other side, CI researchers are not familiar with all real problems and subtle requirements of WSNs. This mismatch makes collaboration and development difficult. This paper intends to close this gap and foster collaboration by offering a detailed introduction to WSNs and their properties. An extensive survey of CI applications to various problems in WSNs from various research areas and publication venues is presented in the paper. Besides, a discussion on advantages and disadvantages of CI algorithms over traditional WSN solutions is offered. In addition, a general evaluation of CI algorithms is presented, which will serve as a guide for using CI algorithms for WSNs.

683 citations

Journal ArticleDOI
TL;DR: Comprehensive experiments on urban vehicular traffic flow data of Beijing and comparisons with several other methods show that the Bayesian network is a very promising and effective approach for traffic flow modeling and forecasting, both for complete data and incomplete data.
Abstract: A new approach based on Bayesian networks for traffic flow forecasting is proposed. In this paper, traffic flows among adjacent road links in a transportation network are modeled as a Bayesian network. The joint probability distribution between the cause nodes (data utilized for forecasting) and the effect node (data to be forecasted) in a constructed Bayesian network is described as a Gaussian mixture model (GMM) whose parameters are estimated via the competitive expectation maximization (CEM) algorithm. Finally, traffic flow forecasting is performed under the criterion of minimum mean square error (mmse). The approach departs from many existing traffic flow forecasting models in that it explicitly includes information from adjacent road links to analyze the trends of the current link statistically. Furthermore, it also encompasses the issue of traffic flow forecasting when incomplete data exist. Comprehensive experiments on urban vehicular traffic flow data of Beijing and comparisons with several other methods show that the Bayesian network is a very promising and effective approach for traffic flow modeling and forecasting, both for complete data and incomplete data

652 citations