scispace - formally typeset
Search or ask a question
Author

Jingyang Wang

Bio: Jingyang Wang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Ceramic & Thermal conductivity. The author has an hindex of 45, co-authored 206 publications receiving 6092 citations. Previous affiliations of Jingyang Wang include National Institute for Materials Science.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors highlight important recent achievements that focus on theoretical prediction, microstructure characterization preparation, and macroscopic properties of newly developed layered ternary transition-metal carbides.
Abstract: Layered ternary carbides contain alternative stacking of structural slabs in the unit cells. Many mechanical and structural features are inherited with respect to their binary carbide counterparts, and some novel properties also appear because of new chemical bonds and atomic coordination at the boundaries of different slabs. In this review, we highlight important recent achievements that focus on theoretical prediction, microstructure characterization preparation, and macroscopic properties of newly developed layered ternary transition-metal carbides. These results provide insights into understanding the relationship between the structure (including crystal structure, chemical bonding, and microstructure) and the properties of these layered ternary carbides and further highlight their technological applications as high-temperature and ultrahigh-temperature structural materials.

344 citations

Journal ArticleDOI
TL;DR: In this paper, the elastic stiffness and electronic band structure of nanolaminate M2AlC (M=Ti,V,Nb, and Cr) ceramics were investigated using the ab initio pseudopotential total energy method.
Abstract: We investigate the elastic stiffness and electronic band structure of nanolaminate M2AlC (M=Ti,V,Nb, and Cr) ceramics by using the ab initio pseudopotential total energy method. The relationship between elastic stiffness and valence electron concentration (VEC) is discussed. The results show that the bulk and shear moduli enhance monotonously as VEC increases in M2AlC. The shear modulus c(44), which by itself represents a pure shear shape change and is directly related to hardness, reaches its maximum when the VEC is in the range of 8.4-8.6. This implies that the bulk modulus, shear modulus, and hardness vary in different trends when the VEC changes in M2AlC. Furthermore, trends in the elastic stiffness are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level of M2AlC. We show that increments of bulk and shear moduli originate from additional valence electrons filling states involving Md-Alp covalent bonding and metal-to-metal t(2g) and e(g) orbitals. For the case of c(44), strengthening the M-Al pd covalent bonds effectively enhances the shear resistance and excessive occupation of dd orbitals gives rise to a negative contribution. The maximum of c(44) is attributed to the complete filling of the Md-Alp bonding states.

291 citations

Journal ArticleDOI
TL;DR: In this article, first-principles calculations were conducted to investigate the bonding characteristics, elastic stiffness, structural stability and minimum thermal conductivity of pyrochlore materials, and the results show that relatively weak La-O bonds play a predominant role in determining the structural stability, mechanical and thermal properties of these compounds.

143 citations

Journal ArticleDOI
TL;DR: Nb(4)AlC(3) as mentioned in this paper is a new compound belonging to the MAX phases, which was discovered by annealing bulk Nb(2)Alc at 1700 degrees C. The crystal structure of Nb4Alc was determined by combined X-ray diffraction, high-resolution transmission electron microscopy and ab initio calculations.

138 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the mechanical and thermal properties of X2-RE 2 SiO 5 orthosilicates based on theoretical explorations of their elastic stiffness and thermal conductivity, and experimental evaluations of the macroscopic performances of dense specimens from room to high temperatures.
Abstract: X2-RE 2 SiO 5 orthosilicates are promising candidate environmental/thermal barrier coating (ETBC) materials for silicon-based ceramics because of their excellent durability in high-temperature environments and potential low thermal conductivities. We herein present the mechanical and thermal properties of X2-RE 2 SiO 5 orthosilicates based on theoretical explorations of their elastic stiffness and thermal conductivity, and experimental evaluations of the macroscopic performances of dense specimens from room to high temperatures. Mechanical and thermal properties may be grouped into two: those that are sensitive to the rare-earth (RE) species, including flexural strength, elastic modulus, and thermal shock resistance, and those that are less sensitive to the RE species, including thermal conductivity, thermal expansion coefficient, and brittle-to-ductile transition temperature (BDTT). The orthosilicates show excellent elastic stiffness at high temperatures, high BDTTs, very low experimental thermal conductivities, and compatible thermal expansion coefficients. The reported information provides important material selection and optimization guidelines for X2-RE 2 SiO 5 as ETBC candidates.

137 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist.
Abstract: The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research. More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

4,745 citations

Journal ArticleDOI
Abstract: This article presents an overview of the developments in stainless steels made since the 1990s. Some of the new applications that involve the use of stainless steel are also introduced. A brief introduction to the various classes of stainless steels, their precipitate phases and the status quo of their production around the globe is given first. The advances in a variety of subject areas that have been made recently will then be presented. These recent advances include (1) new findings on the various precipitate phases (the new J phase, new orientation relationships, new phase diagram for the Fe–Cr system, etc.); (2) new suggestions for the prevention/mitigation of the different problems and new methods for their detection/measurement and (3) new techniques for surface/bulk property enhancement (such as laser shot peening, grain boundary engineering and grain refinement). Recent developments in topics like phase prediction, stacking fault energy, superplasticity, metadynamic recrystallisation and the calculation of mechanical properties are introduced, too. In the end of this article, several new applications that involve the use of stainless steels are presented. Some of these are the use of austenitic stainless steels for signature authentication (magnetic recording), the utilisation of the cryogenic magnetic transition of the sigma phase for hot spot detection (the Sigmaplugs), the new Pt-enhanced radiopaque stainless steel (PERSS) coronary stents and stainless steel stents that may be used for magnetic drug targeting. Besides recent developments in conventional stainless steels, those in the high-nitrogen, low-Ni (or Ni-free) varieties are also introduced. These recent developments include new methods for attaining very high nitrogen contents, new guidelines for alloy design, the merits/demerits associated with high nitrogen contents, etc.

1,668 citations

Journal ArticleDOI
TL;DR: The exceptional properties, including good electronic conductivity, fast Li diffusion, low operating voltage, and high theoretical Li storage capacity, make Ti(3)C(2) MXene a promising anode material for Li ion batteries.
Abstract: Density functional theory (DFT) computations were performed to investigate the electronic properties and Li storage capability of Ti3C2, one representative MXene (M represents transition metals, and X is either C or/and N) material, and its fluorinated and hydroxylated derivatives. The Ti3C2 monolayer acts as a magnetic metal, while its derived Ti3C2F2 and Ti3C2(OH)2 in their stable conformations are semiconductors with small band gaps. Li adsorption forms a strong Coulomb interaction with Ti3C2-based hosts but well preserves its structural integrity. The bare Ti3C2 monolayer exhibits a low barrier for Li diffusion and high Li storage capacity (up to Ti3C2Li2 stoichiometry). The surface functionalization of F and OH blocks Li transport and decreases Li storage capacity, which should be avoided in experiments. The exceptional properties, including good electronic conductivity, fast Li diffusion, low operating voltage, and high theoretical Li storage capacity, make Ti3C2 MXene a promising anode material for...

1,609 citations

Journal ArticleDOI
TL;DR: In this article, a review of thermal transport at the nanoscale is presented, emphasizing developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field.
Abstract: A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interface...

1,307 citations