scispace - formally typeset
Search or ask a question
Author

Jingyao Zhao

Bio: Jingyao Zhao is an academic researcher from Xi'an Jiaotong University. The author has contributed to research in topics: Speleothem & East Asian Monsoon. The author has an hindex of 11, co-authored 23 publications receiving 313 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the Younger Dryas event occurred first at high northern latitudes and then propagated southward into the tropical monsoon belt through both atmospheric and oceanic processes, ultimately reaching Antarctica before reversing the course to its eventual termination.
Abstract: The Younger Dryas (YD), arguably the most widely studied millennial-scale extreme climate event, was characterized by diverse hydroclimate shifts globally and severe cooling at high northern latitudes that abruptly punctuated the warming trend from the last glacial to the present interglacial. To date, a precise understanding of its trigger, propagation, and termination remains elusive. Here, we present speleothem oxygen-isotope data that, in concert with other proxy records, allow us to quantify the timing of the YD onset and termination at an unprecedented subcentennial temporal precision across the North Atlantic, Asian Monsoon-Westerlies, and South American Monsoon regions. Our analysis suggests that the onsets of YD in the North Atlantic (12,870 ± 30 B.P.) and the Asian Monsoon-Westerlies region are essentially synchronous within a few decades and lead the onset in Antarctica, implying a north-to-south climate signal propagation via both atmospheric (decadal-time scale) and oceanic (centennial-time scale) processes, similar to the Dansgaard-Oeschger events during the last glacial period. In contrast, the YD termination may have started first in Antarctica at ∼11,900 B.P., or perhaps even earlier in the western tropical Pacific, followed by the North Atlantic between ∼11,700 ± 40 and 11,610 ± 40 B.P. These observations suggest that the initial YD termination might have originated in the Southern Hemisphere and/or the tropical Pacific, indicating a Southern Hemisphere/tropics to North Atlantic-Asian Monsoon-Westerlies directionality of climatic recovery.

96 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors published the stalagmite records from Hulu Cave in Nanjing in 2001, which provided new geological observations for the development of orbital-suborbital climate theory; elaborated coupling and differentiation relationships between the Asian monsoon and the westerly climate; reconstructed the history of Asian monseason changes in the Holocene in detail, and thus the hydrological and climate variances behind Chinese and Indian civilization-cultural evolutions.
Abstract: Stalagmite is one kind of secondary carbonates formed in limestone caves (speleothem). After cave water droplets containing Ca2+ and $$\rm{HCO}_3^-$$ drip onto floor, carbonate in the water might become supersaturated due to CO2 degassing under certain conditions, resulting in the formation of stalagmite in a process year after year. Stalagmite is one of important geological archives for paleoclimate research. The advantages include wide spatial distribution, suitable for U-Th and U-Pb dating, enriched in climate proxies, continuity, long time span, comparability and lower sampling cost etc. These factors have propelled stalagmite paleoclimate research to the forefront of global paleoclimatology with an irreplaceable role. The stalagmite paleoclimate study started in the western countries, mainly in Europe and America in 1960s–1970s, while the relevant research in China was progressively developed in the 1980s–1990s after the Reform and Opening up. Although there was a huge gap between the overall research level in China and western countries, a solid research foundation, as well as a number of talent teams were established during the period. In the 21st century, starting from the publication of stalagmite records from Hulu Cave in Nanjing in 2001, the stalagmite paleoclimate research in China has ushered in a flourishing development and a real leap on the basis of international cooperation, resulting in significant international impacts. The landmark achievements, including establishment of the world’s longest (640000 years) East Asian monsoon stalagmite record, as well as the longest Indian monsoon (280000 years), South American monsoon (250000 years), North American westerly climate (330000 years), Central Asian westerly climate (135000 years), and northwestern China westerly climate (500000 years), have laid a milestone in the paleoclimate study in these climate domains. Importantly, these stalagmite records have revealed the relationship of Asian monsoon variations with solar insolation climate change in polar regions, and the South American monsoon changes on orbital-suborbital timescales, which have provided new geological observations for the development of orbital-suborbital climate theory; elaborated coupling and differentiation relationships between the Asian monsoon and the westerly climate; reconstructed the history of Asian monsoon changes in the Holocene in detail, and thus the hydrological and climate variances behind Chinese and Indian civilization-cultural evolutions. Furthermore, a large number of high-resolution stalagmite records over the past 2000 years have been reconstructed, which are important for understanding short-term climate variability and magnitude, events, cycles, and thus the future climate projection. The achievements have also involved the improvements of a number of important techniques, such as U-Th dating method, the establishments of various hydroclimatic proxies, as well as the contributions to the reconstruction of the atmosphere 14C variation history over the past ∼54000 years. On the perspective of the future, the Chinese stalagmite community should continue to develop key techniques, further clarify the hydroclimatic significance of stalagmite proxies, impel the integration of related disciplines, and concentrate on key scientific issues in global climate change and major social demands.

95 citations

Journal ArticleDOI
23 Jul 2019
TL;DR: In this article, the authors use the Speleothem Isotopes Synthesis and Analysis database (SISAL_v1) to present an overview of hydro-climate variability related to the ASM during three periods: the late Pleistocene, the Holocene, and the last two millennia.
Abstract: Asian summer monsoon (ASM) variability significantly affects hydro-climate, and thus socio-economics, in the East Asian region, where nearly one-third of the global population resides. Over the last two decades, speleothem δ18O records from China have been utilized to reconstruct ASM variability and its underlying forcing mechanisms on orbital to seasonal timescales. Here, we use the Speleothem Isotopes Synthesis and Analysis database (SISAL_v1) to present an overview of hydro-climate variability related to the ASM during three periods: the late Pleistocene, the Holocene, and the last two millennia. We highlight the possible global teleconnections and forcing mechanisms of the ASM on different timescales. The longest composite stalagmite δ18O record over the past 640 kyr BP from the region demonstrates that ASM variability on orbital timescales is dominated by the 23 kyr precessional cycles, which are in phase with Northern Hemisphere summer insolation (NHSI). During the last glacial, millennial changes in the intensity of the ASM appear to be controlled by North Atlantic climate and oceanic feedbacks. During the Holocene, changes in ASM intensity were primarily controlled by NHSI. However, the spatio-temporal distribution of monsoon rain belts may vary with changes in ASM intensity on decadal to millennial timescales.

85 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a composite speleothem δ18O record of the last ∼14 kyr from Shennong Cave in southeastern China and model-simulated data of rainfall and meteoric ǫ18O over eastern China.

64 citations

Journal ArticleDOI
TL;DR: Analysis of a seasonally-resolved stalagmite δ18O record from E’mei cave, Jiangxi Province, SEC, indicates that the precipitation seasonality in SEC is remarkably influenced by ocean-atmosphere interactions, with lower EASM/NSM ratios during warm (cold) phases of ENSO/PDO.
Abstract: In southeastern China (SEC), the precipitation amount produced by the East Asian summer monsoon (EASM) is almost equivalent to that during the non-summer monsoon (NSM) period, both of them significantly affecting agriculture and socioeconomy. Here, we present a seasonally-resolved stalagmite δ18O record (δ18Os) for the interval 1810–2009 AD from E’mei cave, Jiangxi Province, SEC. The comparison between δ18Os and instrumental data indicates that the δ18Os variability is primarily controlled by the precipitation seasonality (i.e., the ratio of EASM/NSM precipitation) modulated by the El Nino/Southern Oscillation (ENSO) on interannual to interdecadal timescales. Higher (lower) δ18Os values thereby correspond to lower (higher) EASM/NSM ratios associated with El Nino (La Nina) events. Significant correlations with ENSO and the Pacific Decadal Oscillation (PDO) indicate that the precipitation seasonality in SEC is remarkably influenced by ocean-atmosphere interactions, with lower (higher) EASM/NSM ratios during warm (cold) phases of ENSO/PDO. The progressive increase in δ18Os since 2005 AD may reflect a strengthening of the central Pacific El Nino under continued anthropogenic global warming. The relationship between seasonal precipitation and δ18Os with ENSO/PDO requires further studies.

57 citations


Cited by
More filters
01 Dec 2009
TL;DR: The Younger Dryas event is by far the best studied of the millennial-scale cold snaps of glacial time as discussed by the authors. Yet its origin remains a subject of debate due to lack of a clear geomorphic signature at the correct time and place on the landscape.
Abstract: Abstract The Younger Dryas event is by far the best studied of the millennial-scale cold snaps of glacial time. Yet its origin remains a subject of debate. The long-held scenario that the Younger Dryas was a one-time outlier triggered by a flood of water stored in proglacial Lake Agassiz has fallen from favor due to lack of a clear geomorphic signature at the correct time and place on the landscape. The recent suggestion that the Younger Dryas was triggered by the impact of a comet has not gained traction. Instead, evidence from Chinese stalagmites suggests that, rather than being a freak occurrence, the Younger Dryas is an integral part of the deglacial sequence of events that produced the last termination on a global scale.

177 citations

01 Dec 2005
TL;DR: In this paper, an astronomically tuned age model is proposed based on correlating peak peak biogenic silica responses with the timing of September perihelia, which is derived from analysis of regional climate proxy responses during the Holocene, the last interglacial and around paleomagnetic reversals.
Abstract: A new composite BDP-96 biogenic silica record over the entire Pleistocene was generated by splicing BDP-96-1 and BDP-96-2 drill cores from Lake Baikal, crosschecked against a similar record from a nearby BDP-98 drill core. A new astronomically tuned age model is proposed based on correlating peak biogenic silica responses with the timing of September perihelia. This target is derived from analysis of regional climate proxy responses during the Holocene, the last interglacial and around paleomagnetic reversals. By resolving virtually every precessional cycle during the Pleistocene, the new age model represents a major improvement compared with previously reported Lake Baikal timescales. The astronomically tuned ages of the Pleistocene paleomagnetic reversals are consistent with published dates. The minimal tuning approach we used (precession only) has also aligned high signal power in a narrow obliquity band, confirming the strong presence of orbital forcing. There are also strong ca 100-ka scale cycles, but these are not aligned with the orbital eccentricity. Despite the location of Lake Baikal in a continental interior that is highly sensitive to insolation forcing, the tuned biogenic silica record reveals a consistent phase difference of −32° (ca 4 ka) relative to insolation in the obliquity band. An inherent lag embedded in a continental proxy record, not driven by global ice volume, is an intriguing finding. Another new observation is that long-term changes in sedimentation rates in Lake Baikal appear to be related to the amplitude of orbital forcing; both amplitudes and sedimentation rates undergo significant changes during MIS 24-MIS 19 interval corresponding to the Middle Pleistocene Transition. With potential for linking continental and marine climato-stratigraphies, the new Baikal record serves a new benchmark correlation target in continental Eurasia, as an alternative to June 65°N insolation and ODP-correlated timescales.

144 citations

Journal ArticleDOI
TL;DR: In 2018, the International Union of Geological Sciences formally ratified a proposal to subdivide the Holocene into three stages/ages, along with their equivalent subseries/subepochs, each anchored by a Global boundary Stratotype Section and Point (GSSP) as mentioned in this paper.
Abstract: The Holocene, which currently spans ~11 700 years, is the shortest series/epoch within the geological time scale (GTS), yet it contains a rich archive of evidence in stratigraphical contexts that are frequently continuous and often preserved at high levels of resolution. On 14 June 2018, the Executive Committee of the International Union of Geological Sciences formally ratified a proposal to subdivide the Holocene into three stages/ages, along with their equivalent subseries/subepochs, each anchored by a Global boundary Stratotype Section and Point (GSSP). The new stages are the Greenlandian (Lower/Early Holocene Subseries/Subepoch) with its GSSP in the Greenland NGRIP2 ice core and dated at 11 700 a b2k (before 2000 CE); the Northgrippian (Middle Holocene Subseries/Subepoch) with its GSSP in the Greenland NGRIP1 ice core and dated at 8236 a b2k; and the Meghalayan (Upper/Late Holocene Subseries/Subepoch) with its GSSP in a speleothem from Mawmluh Cave, north-eastern India, with a date of 4250 a b2k. We explain the nomenclature of the new divisions, describe the procedures involved in the ratification process, designate auxiliary stratotypes to support the GSSPs and consider the implications of the subdivision for defining the Anthropocene as a new unit within the GTS. (Less)

111 citations

Journal ArticleDOI
TL;DR: It is shown that the Younger Dryas event occurred first at high northern latitudes and then propagated southward into the tropical monsoon belt through both atmospheric and oceanic processes, ultimately reaching Antarctica before reversing the course to its eventual termination.
Abstract: The Younger Dryas (YD), arguably the most widely studied millennial-scale extreme climate event, was characterized by diverse hydroclimate shifts globally and severe cooling at high northern latitudes that abruptly punctuated the warming trend from the last glacial to the present interglacial. To date, a precise understanding of its trigger, propagation, and termination remains elusive. Here, we present speleothem oxygen-isotope data that, in concert with other proxy records, allow us to quantify the timing of the YD onset and termination at an unprecedented subcentennial temporal precision across the North Atlantic, Asian Monsoon-Westerlies, and South American Monsoon regions. Our analysis suggests that the onsets of YD in the North Atlantic (12,870 ± 30 B.P.) and the Asian Monsoon-Westerlies region are essentially synchronous within a few decades and lead the onset in Antarctica, implying a north-to-south climate signal propagation via both atmospheric (decadal-time scale) and oceanic (centennial-time scale) processes, similar to the Dansgaard-Oeschger events during the last glacial period. In contrast, the YD termination may have started first in Antarctica at ∼11,900 B.P., or perhaps even earlier in the western tropical Pacific, followed by the North Atlantic between ∼11,700 ± 40 and 11,610 ± 40 B.P. These observations suggest that the initial YD termination might have originated in the Southern Hemisphere and/or the tropical Pacific, indicating a Southern Hemisphere/tropics to North Atlantic-Asian Monsoon-Westerlies directionality of climatic recovery.

96 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors published the stalagmite records from Hulu Cave in Nanjing in 2001, which provided new geological observations for the development of orbital-suborbital climate theory; elaborated coupling and differentiation relationships between the Asian monsoon and the westerly climate; reconstructed the history of Asian monseason changes in the Holocene in detail, and thus the hydrological and climate variances behind Chinese and Indian civilization-cultural evolutions.
Abstract: Stalagmite is one kind of secondary carbonates formed in limestone caves (speleothem). After cave water droplets containing Ca2+ and $$\rm{HCO}_3^-$$ drip onto floor, carbonate in the water might become supersaturated due to CO2 degassing under certain conditions, resulting in the formation of stalagmite in a process year after year. Stalagmite is one of important geological archives for paleoclimate research. The advantages include wide spatial distribution, suitable for U-Th and U-Pb dating, enriched in climate proxies, continuity, long time span, comparability and lower sampling cost etc. These factors have propelled stalagmite paleoclimate research to the forefront of global paleoclimatology with an irreplaceable role. The stalagmite paleoclimate study started in the western countries, mainly in Europe and America in 1960s–1970s, while the relevant research in China was progressively developed in the 1980s–1990s after the Reform and Opening up. Although there was a huge gap between the overall research level in China and western countries, a solid research foundation, as well as a number of talent teams were established during the period. In the 21st century, starting from the publication of stalagmite records from Hulu Cave in Nanjing in 2001, the stalagmite paleoclimate research in China has ushered in a flourishing development and a real leap on the basis of international cooperation, resulting in significant international impacts. The landmark achievements, including establishment of the world’s longest (640000 years) East Asian monsoon stalagmite record, as well as the longest Indian monsoon (280000 years), South American monsoon (250000 years), North American westerly climate (330000 years), Central Asian westerly climate (135000 years), and northwestern China westerly climate (500000 years), have laid a milestone in the paleoclimate study in these climate domains. Importantly, these stalagmite records have revealed the relationship of Asian monsoon variations with solar insolation climate change in polar regions, and the South American monsoon changes on orbital-suborbital timescales, which have provided new geological observations for the development of orbital-suborbital climate theory; elaborated coupling and differentiation relationships between the Asian monsoon and the westerly climate; reconstructed the history of Asian monsoon changes in the Holocene in detail, and thus the hydrological and climate variances behind Chinese and Indian civilization-cultural evolutions. Furthermore, a large number of high-resolution stalagmite records over the past 2000 years have been reconstructed, which are important for understanding short-term climate variability and magnitude, events, cycles, and thus the future climate projection. The achievements have also involved the improvements of a number of important techniques, such as U-Th dating method, the establishments of various hydroclimatic proxies, as well as the contributions to the reconstruction of the atmosphere 14C variation history over the past ∼54000 years. On the perspective of the future, the Chinese stalagmite community should continue to develop key techniques, further clarify the hydroclimatic significance of stalagmite proxies, impel the integration of related disciplines, and concentrate on key scientific issues in global climate change and major social demands.

95 citations