scispace - formally typeset
Search or ask a question
Author

Jinhua Jiang

Bio: Jinhua Jiang is an academic researcher from Fujian Medical University. The author has contributed to research in topics: Downregulation and upregulation & Transactivation. The author has an hindex of 2, co-authored 2 publications receiving 94 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that PSMD10/gankyrin promotes autophagy in hepatocellular carcinoma (HCC) in response to starvation or stress through 2 complementary routes, and this results present a novel mechanism involving modulation of ATG7 by PS MD10 in sustainingAutophagy, promoting HCC cell survival against starvation or chemotherapy.
Abstract: Although autophagy is most critical for survival of cancer cells, especially in fast-growing tumors, the mechanism remains to be fully characterized Herein we report that PSMD10/gankyrin promotes autophagy in hepatocellular carcinoma (HCC) in response to starvation or stress through 2 complementary routes PSMD10 was physically associated with ATG7 in the cytoplasm, and this association was enhanced by initial nutrient deprivation Subsequently, PSMD10 translocated into the nucleus and bound cooperatively with nuclear HSF1 (heat shock transcription factor 1) onto the ATG7 promoter, upregulated ATG7 expression in the advanced stage of starvation Intriguingly, the type of PSMD10-mediated autophagy was independent of the proteasome system, although PSMD10 has been believed to be an indispensable chaperone for assembly of the 26S proteasome A significant correlation between PSMD10 expression and ATG7 levels was detected in human HCC biopsies, and the combination of these 2 parameters is a powerful

106 citations

Journal ArticleDOI
TL;DR: Interleukin-1 receptor associated kinase 1 promotes cell proliferation and protects against apoptosis in HCC, and can be a novel target for HCC treatment.
Abstract: Interleukin-1 receptor associated kinase 1 (IRAK1), as a down-stream of toll-like receptor (TLR) signaling, plays important roles in series of malignancies. However, the role of IRAK1 in hepatocellular carcinoma (HCC) remains little known. In our study, reverse transcription-PCR (RT-PCR), Western Blot, and immunohistochemical staining were used to assess the mRNA and protein levels of IRAK1 in clinical samples and cell lines. Cell counting assay and flow cytometry were employed to analyze the effect of IRAK1 on cell cycle and apoptosis. Transwell assay was used to study the role of IRAK1 in cell migration. Moreover, subcutaneous xenograft tumor models predict the efficacy of targeting IRAK1 against HCC in vivo. IRAK1 was over-expressed in HCC tissues and cell lines. Suppression of IRAK1 by small interference RNA (siRNA) or a pharmaceutical IRAK1/4 inhibitor impeded cell growth, induced apoptosis and lessened HCC xenograft tumor growth. Particularly, IRAK1/4 inhibitor treatment caused G1/S cell cycle arrest and apoptosis, confirming IRAK1 as a new therapeutic target for HCC. IRAK1 promotes cell proliferation and protects against apoptosis in HCC, and can be a novel target for HCC treatment.

17 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The mechanism of autophagy under stressful conditions and its roles in tumor suppression and promotion in cancer and in cancer stem-cells are summarized and how Autophagy is a promising potential therapeutic target in cancer treatment is discussed.
Abstract: Autophagy is an intracellular degradative process that occurs under several stressful conditions, including organelle damage, the presence of abnormal proteins, and nutrient deprivation. The mechanism of autophagy initiates the formation of autophagosomes that capture degraded components and then fuse with lysosomes to recycle these components. The modulation of autophagy plays dual roles in tumor suppression and promotion in many cancers. In addition, autophagy regulates the properties of cancer stem-cells by contributing to the maintenance of stemness, the induction of recurrence, and the development of resistance to anticancer reagents. Although some autophagy modulators, such as rapamycin and chloroquine, are used to regulate autophagy in anticancer therapy, since this process also plays roles in both tumor suppression and promotion, the precise mechanism of autophagy in cancer requires further study. In this review, we will summarize the mechanism of autophagy under stressful conditions and its roles in tumor suppression and promotion in cancer and in cancer stem-cells. Furthermore, we discuss how autophagy is a promising potential therapeutic target in cancer treatment.

541 citations

Journal ArticleDOI
TL;DR: It is of great importance to explore the mechanisms underlying sorafenib resistance and to develop individualized therapeutic strategies for coping with these problems, especially for HCC patients.
Abstract: Sorafenib is an oral multikinase inhibitor that suppresses tumor cell proliferation and angiogenesis and promotes tumor cell apoptosis. It was approved by the FDA for the treatment of advanced renal cell carcinoma in 2006, and as a unique target drug for advanced hepatocellular carcinoma (HCC) in 2007. Sorafenib can significantly extend the median survival time of patients but only by 3-5 months. Moreover, it is associated with serious adverse side effects, and drug resistance often develops. Therefore, it is of great importance to explore the mechanisms underlying sorafenib resistance and to develop individualized therapeutic strategies for coping with these problems. Recent studies have revealed that in addition to the primary resistance, several mechanisms are underlying the acquired resistance to sorafenib, such as crosstalk involving PI3K/Akt and JAK-STAT pathways, the activation of hypoxia-inducible pathways, and epithelial-mesenchymal transition. Here, we briefly describe the function of sorafenib, its clinical application, and the molecular mechanisms for drug resistance, especially for HCC patients.

442 citations

Journal ArticleDOI
TL;DR: This study summarizes discoveries achieved recently in terms of the principles of sorafenib resistance and outlines approaches suitable for improving therapeutic outcomes for HCC patients.
Abstract: Sorafenib is a multikinase inhibitor capable of facilitating apoptosis, mitigating angiogenesis and suppressing tumor cell proliferation. In late-stage hepatocellular carcinoma (HCC), sorafenib is currently an effective first-line therapy. Unfortunately, the development of drug resistance to sorafenib is becoming increasingly common. This study aims to identify factors contributing to resistance and ways to mitigate resistance. Recent studies have shown that epigenetics, transport processes, regulated cell death, and the tumor microenvironment are involved in the development of sorafenib resistance in HCC and subsequent HCC progression. This study summarizes discoveries achieved recently in terms of the principles of sorafenib resistance and outlines approaches suitable for improving therapeutic outcomes for HCC patients.

312 citations

Journal ArticleDOI
06 Feb 2017-Oncogene
TL;DR: The data reveals that the pathway ‘HULC/USP22/Sirt1/ protective autophagy’ attenuates the sensitivity of HCC cells to chemotherapeutic agents, suggesting that this pathway may be a novel target for developing sensitizing strategy to HCC chemotherapy.
Abstract: Considerable evidences have shown that autophagy has an important role in tumor chemoresistance. However, it is still unknown whether the lncRNA HULC (highly upregulated in liver cancer) is involved in autophagy and chemoresistance of hepatocellular carcinoma (HCC). In this study, we for the first time demonstrated that treatment with antitumor reagents such as oxaliplatin, 5-fluorouracil and pirarubicin (THP) dramatically induced HULC expression and protective autophagy. Silencing of HULC sensitized HCC cells to the three antitumor reagents via inhibiting protective autophagy. Ectopic expression of HULC elicited the autophagy of HCC cells through stabilizing silent information regulator 1 (Sirt1) protein. The investigation for the corresponding mechanism by which HULC stabilized Sirt1 revealed that HULC upregulated ubiquitin-specific peptidase 22 (USP22), leading to the decrease of ubiquitin-mediated degradation of Sirt1 protein by removing the conjugated polyubiquitin chains from Sirt1. Moreover, we found that miR-6825-5p, miR-6845-5p and miR-6886-3p could decrease the level of USP22 protein by binding to the 3'-untranlated region of USP22 mRNA. All the three microRNAs (miRNAs) were downregulated by HULC, which resulted in the elevation of USP22. In addition, we showed that the level of HULC was positively correlated with that of Sirt1 protein in human HCC tissues. Collectively, our data reveals that the pathway 'HULC/USP22/Sirt1/ protective autophagy' attenuates the sensitivity of HCC cells to chemotherapeutic agents, suggesting that this pathway may be a novel target for developing sensitizing strategy to HCC chemotherapy.

283 citations

Journal ArticleDOI
TL;DR: This Review discusses how proteasome assembly and the regulation of proteasomal degradation are integrated with cellular physiology, including the interplay between the proteasomesome and autophagy pathways.
Abstract: The proteasome degrades most cellular proteins in a controlled and tightly regulated manner and thereby controls many processes, including cell cycle, transcription, signalling, trafficking and protein quality control. Proteasomal degradation is vital in all cells and organisms, and dysfunction or failure of proteasomal degradation is associated with diverse human diseases, including cancer and neurodegeneration. Target selection is an important and well-established way to control protein degradation. In addition, mounting evidence indicates that cells adjust proteasome-mediated degradation to their needs by regulating proteasome abundance through the coordinated expression of proteasome subunits and assembly chaperones. Central to the regulation of proteasome assembly is TOR complex 1 (TORC1), which is the master regulator of cell growth and stress. This Review discusses how proteasome assembly and the regulation of proteasomal degradation are integrated with cellular physiology, including the interplay between the proteasome and autophagy pathways. Understanding these mechanisms has potential implications for disease therapy, as the misregulation of proteasome function contributes to human diseases such as cancer and neurodegeneration.

270 citations