scispace - formally typeset
Search or ask a question
Author

Jinhui Tang

Bio: Jinhui Tang is an academic researcher from Nanjing University of Science and Technology. The author has contributed to research in topics: Computer science & Image retrieval. The author has an hindex of 60, co-authored 318 publications receiving 13883 citations. Previous affiliations of Jinhui Tang include National University of Singapore & China University of Science and Technology.


Papers
More filters
Proceedings ArticleDOI
08 Jul 2009
TL;DR: The benchmark results indicate that it is possible to learn effective models from sufficiently large image dataset to facilitate general image retrieval and four research issues on web image annotation and retrieval are identified.
Abstract: This paper introduces a web image dataset created by NUS's Lab for Media Search. The dataset includes: (1) 269,648 images and the associated tags from Flickr, with a total of 5,018 unique tags; (2) six types of low-level features extracted from these images, including 64-D color histogram, 144-D color correlogram, 73-D edge direction histogram, 128-D wavelet texture, 225-D block-wise color moments extracted over 5x5 fixed grid partitions, and 500-D bag of words based on SIFT descriptions; and (3) ground-truth for 81 concepts that can be used for evaluation. Based on this dataset, we highlight characteristics of Web image collections and identify four research issues on web image annotation and retrieval. We also provide the baseline results for web image annotation by learning from the tags using the traditional k-NN algorithm. The benchmark results indicate that it is possible to learn effective models from sufficiently large image dataset to facilitate general image retrieval.

2,648 citations

Journal ArticleDOI
21 Jul 2017
TL;DR: RCF as mentioned in this paper encapsulates all convolutional features into more discriminative representation, which makes good usage of rich feature hierarchies, and is amenable to training via backpropagation.
Abstract: Edge detection is a fundamental problem in computer vision. Recently, convolutional neural networks (CNNs) have pushed forward this field significantly. Existing methods which adopt specific layers of deep CNNs may fail to capture complex data structures caused by variations of scales and aspect ratios. In this paper, we propose an accurate edge detector using richer convolutional features (RCF). RCF encapsulates all convolutional features into more discriminative representation, which makes good usage of rich feature hierarchies, and is amenable to training via backpropagation. RCF fully exploits multiscale and multilevel information of objects to perform the image-to-image prediction holistically. Using VGG16 network, we achieve state-of-the-art performance on several available datasets. When evaluating on the well-known BSDS500 benchmark, we achieve ODS F-measure of 0.811 while retaining a fast speed (8 FPS). Besides, our fast version of RCF achieves ODS F-measure of 0.806 with 30 FPS. We also demonstrate the versatility of the proposed method by applying RCF edges for classical image segmentation.

758 citations

Proceedings ArticleDOI
29 Sep 2007
TL;DR: A third paradigm is proposed which simultaneously classifies concepts and models correlations between them in a single step by using a novel Correlative Multi-Label (CML) framework and is compared with the state-of-the-art approaches in the first and second paradigms on the widely used TRECVID data set.
Abstract: Automatically annotating concepts for video is a key to semantic-level video browsing, search and navigation. The research on this topic evolved through two paradigms. The first paradigm used binary classification to detect each individual concept in a concept set. It achieved only limited success, as it did not model the inherent correlation between concepts, e.g., urban and building. The second paradigm added a second step on top of the individual concept detectors to fuse multiple concepts. However, its performance varies because the errors incurred in the first detection step can propagate to the second fusion step and therefore degrade the overall performance. To address the above issues, we propose a third paradigm which simultaneously classifies concepts and models correlations between them in a single step by using a novel Correlative Multi-Label (CML) framework. We compare the performance between our proposed approach and the state-of-the-art approaches in the first and second paradigms on the widely used TRECVID data set. We report superior performance from the proposed approach.

490 citations

Journal ArticleDOI
TL;DR: This paper shows that various crucial factors in video annotation, including multiple modalities, multiple distance functions, and temporal consistency, all correspond to different relationships among video units, and hence they can be represented by different graphs, and proposes optimized multigraph-based semi-supervised learning (OMG-SSL), which aims to simultaneously tackle these difficulties in a unified scheme.
Abstract: Learning-based video annotation is a promising approach to facilitating video retrieval and it can avoid the intensive labor costs of pure manual annotation. But it frequently encounters several difficulties, such as insufficiency of training data and the curse of dimensionality. In this paper, we propose a method named optimized multigraph-based semi-supervised learning (OMG-SSL), which aims to simultaneously tackle these difficulties in a unified scheme. We show that various crucial factors in video annotation, including multiple modalities, multiple distance functions, and temporal consistency, all correspond to different relationships among video units, and hence they can be represented by different graphs. Therefore, these factors can be simultaneously dealt with by learning with multiple graphs, namely, the proposed OMG-SSL approach. Different from the existing graph-based semi-supervised learning methods that only utilize one graph, OMG-SSL integrates multiple graphs into a regularization framework in order to sufficiently explore their complementation. We show that this scheme is equivalent to first fusing multiple graphs and then conducting semi-supervised learning on the fused graph. Through an optimization approach, it is able to assign suitable weights to the graphs. Furthermore, we show that the proposed method can be implemented through a computationally efficient iterative process. Extensive experiments on the TREC video retrieval evaluation (TRECVID) benchmark have demonstrated the effectiveness and efficiency of our proposed approach.

453 citations

Proceedings ArticleDOI
01 Jun 2018
TL;DR: This paper proposes an algorithm to directly restore a clear image from a hazy image based on a conditional generative adversarial network (cGAN), where the clear image is estimated by an end-to-end trainable neural network.
Abstract: In this paper, we present an algorithm to directly restore a clear image from a hazy image. This problem is highly ill-posed and most existing algorithms often use hand-crafted features, e.g., dark channel, color disparity, maximum contrast, to estimate transmission maps and then atmospheric lights. In contrast, we solve this problem based on a conditional generative adversarial network (cGAN), where the clear image is estimated by an end-to-end trainable neural network. Different from the generative network in basic cGAN, we propose an encoder and decoder architecture so that it can generate better results. To generate realistic clear images, we further modify the basic cGAN formulation by introducing the VGG features and an L1-regularized gradient prior. We also synthesize a hazy dataset including indoor and outdoor scenes to train and evaluate the proposed algorithm. Extensive experimental results demonstrate that the proposed method performs favorably against the state-of-the-art methods on both synthetic dataset and real world hazy images.

350 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2009
TL;DR: This report provides a general introduction to active learning and a survey of the literature, including a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date.
Abstract: The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer training labels if it is allowed to choose the data from which it learns. An active learner may pose queries, usually in the form of unlabeled data instances to be labeled by an oracle (e.g., a human annotator). Active learning is well-motivated in many modern machine learning problems, where unlabeled data may be abundant or easily obtained, but labels are difficult, time-consuming, or expensive to obtain. This report provides a general introduction to active learning and a survey of the literature. This includes a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date. An analysis of the empirical and theoretical evidence for successful active learning, a summary of problem setting variants and practical issues, and a discussion of related topics in machine learning research are also presented.

5,227 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: New state-of-the-art segmentation performance on three challenging scene segmentation datasets, i.e., Cityscapes, PASCAL Context and COCO Stuff dataset is achieved without using coarse data.
Abstract: In this paper, we address the scene segmentation task by capturing rich contextual dependencies based on the self-attention mechanism. Unlike previous works that capture contexts by multi-scale features fusion, we propose a Dual Attention Networks (DANet) to adaptively integrate local features with their global dependencies. Specifically, we append two types of attention modules on top of traditional dilated FCN, which model the semantic interdependencies in spatial and channel dimensions respectively. The position attention module selectively aggregates the features at each position by a weighted sum of the features at all positions. Similar features would be related to each other regardless of their distances. Meanwhile, the channel attention module selectively emphasizes interdependent channel maps by integrating associated features among all channel maps. We sum the outputs of the two attention modules to further improve feature representation which contributes to more precise segmentation results. We achieve new state-of-the-art segmentation performance on three challenging scene segmentation datasets, i.e., Cityscapes, PASCAL Context and COCO Stuff dataset. In particular, a Mean IoU score of 81.5% on Cityscapes test set is achieved without using coarse data.

4,327 citations