scispace - formally typeset
Search or ask a question
Author

Jinke Yu

Bio: Jinke Yu is an academic researcher. The author has contributed to research in topics: Face (geometry) & Computer science. The author has an hindex of 1, co-authored 1 publications receiving 233 citations.

Papers
More filters
Posted Content
TL;DR: A robust single-stage face detector, named RetinaFace, which performs pixel-wise face localisation on various scales of faces by taking advantages of joint extra-supervised and self-super supervised multi-task learning.
Abstract: Though tremendous strides have been made in uncontrolled face detection, accurate and efficient face localisation in the wild remains an open challenge. This paper presents a robust single-stage face detector, named RetinaFace, which performs pixel-wise face localisation on various scales of faces by taking advantages of joint extra-supervised and self-supervised multi-task learning. Specifically, We make contributions in the following five aspects: (1) We manually annotate five facial landmarks on the WIDER FACE dataset and observe significant improvement in hard face detection with the assistance of this extra supervision signal. (2) We further add a self-supervised mesh decoder branch for predicting a pixel-wise 3D shape face information in parallel with the existing supervised branches. (3) On the WIDER FACE hard test set, RetinaFace outperforms the state of the art average precision (AP) by 1.1% (achieving AP equal to 91.4%). (4) On the IJB-C test set, RetinaFace enables state of the art methods (ArcFace) to improve their results in face verification (TAR=89.59% for FAR=1e-6). (5) By employing light-weight backbone networks, RetinaFace can run real-time on a single CPU core for a VGA-resolution image. Extra annotations and code have been made available at: this https URL.

357 citations

Journal ArticleDOI
15 Aug 2022
TL;DR: A straightforward algorithm is implemented, in which joint face 3D mesh and 2D landmark regression are proposed for perspective 3D face reconstruction and 6DoF pose estimation.
Abstract: Even though 3D face reconstruction has achieved impressive progress, most orthogonal projection-based face reconstruction methods can not achieve accurate and consistent reconstruction results when the face is very close to the camera due to the distortion under the perspective projection. In this paper, we propose to simultaneously reconstruct 3D face mesh in the world space and predict 2D face landmarks on the image plane to address the problem of perspective 3D face reconstruction. Based on the predicted 3D vertices and 2D landmarks, the 6DoF (6 Degrees of Freedom) face pose can be easily estimated by the PnP solver to represent perspective projection. Our approach achieves 1st place on the leader-board of the ECCV 2022 WCPA challenge and our model is visually robust under different identities, expressions and poses. The training code and models are released to facilitate future research.

Cited by
More filters
Proceedings ArticleDOI
14 Jun 2020
TL;DR: A novel single-shot, multi-level face localisation method, named RetinaFace, which unifies face box prediction, 2D facial landmark localisation and 3D vertices regression under one common target: point regression on the image plane.
Abstract: Though tremendous strides have been made in uncontrolled face detection, accurate and efficient 2D face alignment and 3D face reconstruction in-the-wild remain an open challenge. In this paper, we present a novel single-shot, multi-level face localisation method, named RetinaFace, which unifies face box prediction, 2D facial landmark localisation and 3D vertices regression under one common target: point regression on the image plane. To fill the data gap, we manually annotated five facial landmarks on the WIDER FACE dataset and employed a semi-automatic annotation pipeline to generate 3D vertices for face images from the WIDER FACE, AFLW and FDDB datasets. Based on extra annotations, we propose a mutually beneficial regression target for 3D face reconstruction, that is predicting 3D vertices projected on the image plane constrained by a common 3D topology. The proposed 3D face reconstruction branch can be easily incorporated, without any optimisation difficulty, in parallel with the existing box and 2D landmark regression branches during joint training. Extensive experimental results show that RetinaFace can simultaneously achieve stable face detection, accurate 2D face alignment and robust 3D face reconstruction while being efficient through single-shot inference.

683 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of recent advances in visual object detection with deep learning can be found in this article, where the authors systematically analyze the existing object detection frameworks and organize the survey into three major parts: detection components, learning strategies, and applications and benchmarks.

420 citations

Journal ArticleDOI
11 Aug 2020-Sensors
TL;DR: This work evaluates the speed–accuracy tradeoff of three popular deep learning-based face detectors on the WIDER Face and UFDD data sets in several CPUs and GPUs and develops a regression model capable to estimate the performance, both in terms of processing time and accuracy.
Abstract: Face recognition is a valuable forensic tool for criminal investigators since it certainly helps in identifying individuals in scenarios of criminal activity like fugitives or child sexual abuse. It is, however, a very challenging task as it must be able to handle low-quality images of real world settings and fulfill real time requirements. Deep learning approaches for face detection have proven to be very successful but they require large computation power and processing time. In this work, we evaluate the speed-accuracy tradeoff of three popular deep-learning-based face detectors on the WIDER Face and UFDD data sets in several CPUs and GPUs. We also develop a regression model capable to estimate the performance, both in terms of processing time and accuracy. We expect this to become a very useful tool for the end user in forensic laboratories in order to estimate the performance for different face detection options. Experimental results showed that the best speed-accuracy tradeoff is achieved with images resized to 50% of the original size in GPUs and images resized to 25% of the original size in CPUs. Moreover, performance can be estimated using multiple linear regression models with a Mean Absolute Error (MAE) of 0.113, which is very promising for the forensic field.

267 citations

Book
26 Jun 2021
TL;DR: The synthetic-to-real domain adaptation problem that inevitably arises in applications of synthetic data is discussed, including synthetic- to-real refinement with GAN-based models and domain adaptation at the feature/model level without explicit data transformations.
Abstract: Synthetic data is an increasingly popular tool for training deep learning models, especially in computer vision but also in other areas. In this work, we attempt to provide a comprehensive survey of the various directions in the development and application of synthetic data. First, we discuss synthetic datasets for basic computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, simulation environments for robotics, applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more); we also survey the work on improving synthetic data development and alternative ways to produce it such as GANs. Second, we discuss in detail the synthetic-to-real domain adaptation problem that inevitably arises in applications of synthetic data, including synthetic-to-real refinement with GAN-based models and domain adaptation at the feature/model level without explicit data transformations. Third, we turn to privacy-related applications of synthetic data and review the work on generating synthetic datasets with differential privacy guarantees. We conclude by highlighting the most promising directions for further work in synthetic data studies.

177 citations

Posted Content
TL;DR: This paper performs a cross-sectional model-based quantitative census covering factors such as age, gender, NSFW content scoring, class- wise accuracy, human-cardinality-analysis, and the semanticity of the image class information in order to statistically investigate the extent and subtleties of ethical transgressions.
Abstract: In this paper we investigate problematic practices and consequences of large scale vision datasets. We examine broad issues such as the question of consent and justice as well as specific concerns such as the inclusion of verifiably pornographic images in datasets. Taking the ImageNet-ILSVRC-2012 dataset as an example, we perform a cross-sectional model-based quantitative census covering factors such as age, gender, NSFW content scoring, class-wise accuracy, human-cardinality-analysis, and the semanticity of the image class information in order to statistically investigate the extent and subtleties of ethical transgressions. We then use the census to help hand-curate a look-up-table of images in the ImageNet-ILSVRC-2012 dataset that fall into the categories of verifiably pornographic: shot in a non-consensual setting (up-skirt), beach voyeuristic, and exposed private parts. We survey the landscape of harm and threats both society broadly and individuals face due to uncritical and ill-considered dataset curation practices. We then propose possible courses of correction and critique the pros and cons of these. We have duly open-sourced all of the code and the census meta-datasets generated in this endeavor for the computer vision community to build on. By unveiling the severity of the threats, our hope is to motivate the constitution of mandatory Institutional Review Boards (IRB) for large scale dataset curation processes.

170 citations