scispace - formally typeset
Search or ask a question
Author

Jinming Cai

Bio: Jinming Cai is an academic researcher from Kunming University of Science and Technology. The author has contributed to research in topics: Materials science & Graphene. The author has an hindex of 15, co-authored 61 publications receiving 6388 citations. Previous affiliations of Jinming Cai include Swiss Federal Laboratories for Materials Science and Technology & Chinese Academy of Sciences.


Papers
More filters
Journal ArticleDOI
22 Jul 2010-Nature
TL;DR: Cai et al. as discussed by the authors used a surface-assisted coupling of the precursors into linear polyphenylenes and their subsequent cyclodehydrogenation to produce GNRs of different topologies and widths.
Abstract: Graphene nanoribbons, narrow straight-edged strips of the single-atom-thick sheet form of carbon, are predicted to exhibit remarkable properties, making them suitable for future electronic applications. Before this potential can be realized, more chemically precise methods of production will be required. Cai et al. report a step towards that goal with the development of a bottom-up fabrication method that produces atomically precise graphene nanoribbons of different topologies and widths. The process involves the deposition of precursor monomers with structures that 'encode' the topology and width of the desired ribbon end-product onto a metal surface. Surface-assisted coupling of the precursors into linear polyphenylenes is then followed by cyclodehydrogenation. Given the method's versatility and precision, it could even provide a route to more unusual graphene nanoribbon structures with tuned chemical and electronic properties. Graphene nanoribbons (GNRs) have structure-dependent electronic properties that make them attractive for the fabrication of nanoscale electronic devices, but exploiting this potential has been hindered by the lack of precise production methods. Here the authors demonstrate how to reliably produce different GNRs, using precursor monomers that encode the structure of the targeted nanoribbon and are converted into GNRs by means of surface-assisted coupling. Graphene nanoribbons—narrow and straight-edged stripes of graphene, or single-layer graphite—are predicted to exhibit electronic properties that make them attractive for the fabrication of nanoscale electronic devices1,2,3. In particular, although the two-dimensional parent material graphene4,5 exhibits semimetallic behaviour, quantum confinement and edge effects2,6 should render all graphene nanoribbons with widths smaller than 10 nm semiconducting. But exploring the potential of graphene nanoribbons is hampered by their limited availability: although they have been made using chemical7,8,9, sonochemical10 and lithographic11,12 methods as well as through the unzipping of carbon nanotubes13,14,15,16, the reliable production of graphene nanoribbons smaller than 10 nm with chemical precision remains a significant challenge. Here we report a simple method for the production of atomically precise graphene nanoribbons of different topologies and widths, which uses surface-assisted coupling17,18 of molecular precursors into linear polyphenylenes and their subsequent cyclodehydrogenation19,20. The topology, width and edge periphery of the graphene nanoribbon products are defined by the structure of the precursor monomers, which can be designed to give access to a wide range of different graphene nanoribbons. We expect that our bottom-up approach to the atomically precise fabrication of graphene nanoribbons will finally enable detailed experimental investigations of the properties of this exciting class of materials. It should even provide a route to graphene nanoribbon structures with engineered chemical and electronic properties, including the theoretically predicted intraribbon quantum dots21, superlattice structures22 and magnetic devices based on specific graphene nanoribbon edge states3.

2,905 citations

Journal ArticleDOI
01 Mar 2009-Carbon
TL;DR: In this paper, composites based on graphene-based sheets have been fabricated by incorporating solution-processable functionalized graphene into an epoxy matrix, and their electromagnetic interference (EMI) shielding studies were studied.

1,175 citations

Journal ArticleDOI
TL;DR: By surface-assisted coupling of specifically designed molecular building blocks, the fabrication of regular two-dimensional polyphenylene networks with single-atom wide pores and sub-nanometer periodicity is demonstrated.

637 citations

Journal ArticleDOI
TL;DR: The fabrication of graphene nanoribbon heterojunctions and heterostructures by combining pristine hydrocarbon precursors with their nitrogen-substituted equivalents are reported, and it is shown that these materials bear a high potential for applications in photovoltaics and electronics.
Abstract: p–n junctions are formed in heterostructures made of pristine and nitrogen-doped graphene nanoribbons. Despite graphene's remarkable electronic properties1,2, the lack of an electronic bandgap severely limits its potential for applications in digital electronics3,4. In contrast to extended films, narrow strips of graphene (called graphene nanoribbons) are semiconductors through quantum confinement5,6, with a bandgap that can be tuned as a function of the nanoribbon width and edge structure7,8,9,10. Atomically precise graphene nanoribbons can be obtained via a bottom-up approach based on the surface-assisted assembly of molecular precursors11. Here we report the fabrication of graphene nanoribbon heterojunctions and heterostructures by combining pristine hydrocarbon precursors with their nitrogen-substituted equivalents. Using scanning probe methods, we show that the resulting heterostructures consist of seamlessly assembled segments of pristine (undoped) graphene nanoribbons (p-GNRs) and deterministically nitrogen-doped graphene nanoribbons (N-GNRs), and behave similarly to traditional p–n junctions12. With a band shift of 0.5 eV and an electric field of 2 × 108 V m–1 at the heterojunction, these materials bear a high potential for applications in photovoltaics and electronics.

515 citations

Journal ArticleDOI
TL;DR: It is shown that different balances between diffusion and intermolecular coupling determine the observed branched and compact polyphenylene networks on the Cu and Ag surface, respectively, demonstrating that the choice of the substrate plays a crucial role in the formation of two-dimensional polymers.
Abstract: We report on a combined scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) study on the surface-assisted assembly of the hexaiodo-substituted macrocycle cyclohexa-m-phenylene (CHP) toward covalently bonded polyphenylene networks on Cu(111), Au(111), and Ag(111) surfaces. STM and XPS indicate room temperature dehalogenation of CHP on either surface, leading to surface-stabilized CHP radicals (CHPRs) and coadsorbed iodine. Subsequent covalent intermolecular bond formation between CHPRs is thermally activated and is found to proceed at different temperatures on the three coinage metals. The resulting polyphenylene networks differ significantly in morphology on the three substrates: On Cu, the networks are dominated by “open” branched structures, on the Au surface a mixture of branched and small domains of compact network clusters are observed, and highly ordered and dense polyphenylene networks form on the Ag surface. Ab initio DFT calculations al...

474 citations


Cited by
More filters
Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Abstract: Graphene has attracted tremendous research interest in recent years, owing to its exceptional properties. The scaled-up and reliable production of graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), offers a wide range of possibilities to synthesize graphene-based functional materials for various applications. This critical review presents and discusses the current development of graphene-based composites. After introduction of the synthesis methods for graphene and its derivatives as well as their properties, we focus on the description of various methods to synthesize graphene-based composites, especially those with functional polymers and inorganic nanostructures. Particular emphasis is placed on strategies for the optimization of composite properties. Lastly, the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, as well as Raman enhancement are described (279 references).

3,340 citations

Journal ArticleDOI
09 Sep 2016-Science
TL;DR: The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
Abstract: Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.

3,251 citations