scispace - formally typeset
Search or ask a question
Author

Jinshui Zhang

Bio: Jinshui Zhang is an academic researcher from Fuzhou University. The author has contributed to research in topics: Photocatalysis & Carbon nitride. The author has an hindex of 40, co-authored 70 publications receiving 13989 citations. Previous affiliations of Jinshui Zhang include Oak Ridge National Laboratory & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: Graphitic carbon nitride nanosheets are extracted via simple liquid-phase exfoliation of a layered bulk material, g-C3N4, to exhibit excellent photocatalytic activity for hydrogen evolution under visible light.
Abstract: Graphitic carbon nitride nanosheets are extracted, produced via simple liquid-phase exfoliation of a layered bulk material, g-C3N4. The resulting nanosheets, having ≈2 nm thickness and N/C atomic ratio of 1.31, show an optical bandgap of 2.65 eV. The carbon nitride nanosheets are demonstrated to exhibit excellent photocatalytic activity for hydrogen evolution under visible light.

2,137 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the optical absorption of carbon nitride semiconductor materials is extendable into the visible region up to about 750 nm by simple copolymerization with organic monomers like barbituric acid (BA).
Abstract: and nonmetallic elements (N, C, B) creates localized/ delocalized states in the band gap and thus extends its optical absorption to the visible region, but doping usually comes with accelerated charge recombination and lower stability of the doped materials. Meanwhile, various other inorganic, non-TiO2-based, visible-light catalysts have been developed (e.g., metal oxides, nitrides, sulfides, phosphides, and their mixed solid solutions), whereby Ga, Ge, In, Ta, Nb, and W are the main metal constituents. However, sustained utilization of solar energy calls for the development of more abundant and stable catalysts working with visible light, and this has remained challenging so far. Recently, a polymeric semiconductor on the basis of a defecteous graphitic carbon nitride (g-C3N4), was introduced as a metal-free photocatalyst which fulfills the basic requirements for a water-splitting catalyst, including being abundant, stable, and responsive to visible light. In the following, we use the notation “g-C3N4” to describe this class of materials rather than the idealized structure. The most active system is in fact presumably an N-bridged “poly(tri-s-triazine)”, already described by Liebig as “melon”. A semiconductor structure with band edges straddling the water redox potential was revealed for melon by DFT calculations, albeit electrochemical analysis is still awaited. g-C3N4 is considered to be the most stable phase of covalent carbon nitride, and facile synthesis of the melon substructure from simple liquid precursors and monomers allows easy engineering of carbon nitride materials to achieve the desired nanostructures via soft-chemical processing routes and methods. For instance, a high surface area (67–400 mg ) can be imparted on g-C3N4 materials by polymerization of cyanamide on a silica template, which results in photocatalytically more active g-C3N4 nanostructures. [8] Metal-doped gC3N4 can also be conveniently obtained by polymerization of dicyandiamine in the presence of metal salts, and thus multifunctionalization of such materials for a variety of applications can be achieved. Most importantly, the electronic and optical properties of carbon nitride, regarded as a polymer semiconductor, are in principle adjustable by organic protocols. Such organic protocols have been widely used to control the performance of traditional p-conjugated polymers, for example, to improve solar-cell efficiencies by constructing copolymerized donor–acceptor structures, or to modify electronic properties by co-blending with p/n-type organic dopants. Our aim was to use such organic modifications to extend the insufficient light absorption of g-C3N4 (a result of its large band gap of 2.7 eV, which corresponds to wavelengths shorter than 460 nm) towards the maximum of the solar spectrum. Here we demonstrate that the optical absorption of carbon nitride semiconductor materials is extendable into the visible region up to about 750 nm by simple copolymerization with organic monomers like barbituric acid (BA). The electronic and photoelectric properties of the modified carbon nitrides were then investigated to elucidate their enhanced activity for hydrogen production from water containing an appropriate sacrificial reagent with visible light. In principle, BA can be directly incorporated into the classical carbon nitride condensation scheme (Scheme 1). New carbon nitride structures were therefore synthesized by dissolving dicyandiamide with different amounts of BA in water, followed by thermally induced copolymerization at 823 K. For simplicity, the resulting samples are denoted CNBx, where x (0.05, 0.1, 0.2, 0.5, 1, 2) refers to the weighedin amount of BA. The structure, texture, and electrochemical properties of these materials were characterized, and their photochemical performance analyzed. Their XRD patterns (Figure S1, Supporting Information) are dominated by the characteristic (002) peak at 27.48 of a graphitic, layered structure with an interlayer distance of d = [*] J. Zhang, X. Chen , Prof. X. Fu, Prof. X. Wang State Key Laboratory Breeding Base of Photocatalysis Fuzhou University, Fuzhou 350002 (China) E-mail: xcwang@fzu.edu.cn

1,244 citations

Journal ArticleDOI
Xiufang Chen1, Jinshui Zhang1, Xianzhi Fu1, Markus Antonietti1, Xinchen Wang1 
TL;DR: A bioinspired iron-based catalyst with semiconductor photocatalytic functions in combination with a high surface area holds promise for synthetic chemistry via combining photocatalysis with organosynthesis through using g-C(3)N(4) nanoparticles.
Abstract: A bioinspired iron-based catalyst with semiconductor photocatalytic functions in combination with a high surface area holds promise for synthetic chemistry via combining photocatalysis with organosynthesis. Here exemplified for phenol synthesis, Fe-g-C3N4/SBA-15 is able to oxidize benzene to phenol with H2O2 even without the aid of strong acids or alkaline promoters. By taking advantage of both catalysis and photocatalyisis functions of g-C3N4 nanoparticles, the yield of the phenol can be markedly promoted.

946 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the heating temperature and the presence of sulfur motifs offer a facile chemical pathway for the control of the condensation/polymerization of carbon nitride, and thus adjusting their textural and electronic properties.
Abstract: Converting solar energy into hydrogen gas by water splitting is considered as a long-term solution to address global energy and environmental problems. Great effort has been devoted to the search for abundant systems for the purpose of efficient capture, conversion, and storage of solar energy in a cost-effective manner. To further advance the recently-developed carbon nitride photocatalysis for solar hydrogen generation, thiourea, a sulfur-containing compound, was used as a cheap and easily-available starting material for the synthesis of graphitic carbon nitride semiconductors. The as-prepared photocatalysts were subjected to several characterizations, and the results showed that the heating temperature and the presence of sulfur motifs offer a facile chemical pathway for the control of the condensation/polymerization of carbon nitride, and thus adjusting their textural and electronic properties. Photocatalytic activity experiments demonstrated that the g-C3N4 synthesized from thiourea exhibited a much higher H2 production rate than that of g-C3N4 prepared from dicyanamide or urea, and this activity can be further enhanced by increasing the condensation temperature.

847 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent research advances in the establishment of two synthetic strategies for conjugated carbon nitride nanosheets is presented, namely, the top-down delamination of graphitic carbon dioxide (CN) solids and the bottom-up assembly of molecular building blocks in a 2D manner.
Abstract: The development of new layered materials has experienced an evolution from graphene to metal oxide and metal chalcogenide nanosheets, and more recently to two-dimensional (2D) covalent organic frameworks, such as conjugated carbon nitride nanosheets (CNNs) with a spectral gap in the band structure. The anisotropic 2D geometric morphology, together with the aromatic π-conjugated framework, endows polymeric CNNs with unique properties, such as an enlarged surface area with a highly opened-up flat structure, reduced thickness with enhanced electron mobility and with intrinsic semiconductive features, which support their attractive bandgap- and surface-engineered applications ranging from energy-related topics to other new emerging fields. In this review, recent research advances in the establishment of two synthetic strategies for CNNs are firstly overviewed, namely, the top-down delamination of graphitic carbon nitride (CN) solids and the bottom-up assembly of molecular building blocks in a 2D manner. Efficient approaches aimed at advancing CNNs for target-specific applications, including hybridizing, doping, sensitization, copolymerization and nanorefinement, are also described as possible solutions.

845 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
26 Sep 1997-Science
TL;DR: In this paper, the Young's modulus, strength, and toughness of nanostructures are evaluated using an atomic force microscopy (AFM) approach. And the results showed that the strength of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values.
Abstract: The Young's modulus, strength, and toughness of nanostructures are important to proposed applications ranging from nanocomposites to probe microscopy, yet there is little direct knowledge of these key mechanical properties. Atomic force microscopy was used to determine the mechanical properties of individual, structurally isolated silicon carbide (SiC) nanorods (NRs) and multiwall carbon nanotubes (MWNTs) that were pinned at one end to molybdenum disulfide surfaces. The bending force was measured versus displacement along the unpinned lengths. The MWNTs were about two times as stiff as the SiC NRs. Continued bending of the SiC NRs ultimately led to fracture, whereas the MWNTs exhibited an interesting elastic buckling process. The strengths of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values. Because of buckling, the ultimate strengths of the stiffer MWNTs were less than those of the SiC NRs, although the MWNTs represent a uniquely tough, energy-absorbing material.

4,627 citations

Journal ArticleDOI
09 Jan 1998-Science
TL;DR: Studies carried out with different conditions and catalyst materials confirmed the central details of the growth mechanism and suggest that well-established phase diagrams can be used to predict rationally catalyst materials and growth conditions for the preparation of nanowires.
Abstract: A method combining laser ablation cluster formation and vapor-liquid-solid (VLS) growth was developed for the synthesis of semiconductor nanowires. In this process, laser ablation was used to prepare nanometer-diameter catalyst clusters that define the size of wires produced by VLS growth. This approach was used to prepare bulk quantities of uniform single-crystal silicon and germanium nanowires with diameters of 6 to 20 and 3 to 9 nanometers, respectively, and lengths ranging from 1 to 30 micrometers. Studies carried out with different conditions and catalyst materials confirmed the central details of the growth mechanism and suggest that well-established phase diagrams can be used to predict rationally catalyst materials and growth conditions for the preparation of nanowires.

4,405 citations

Journal ArticleDOI
TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Abstract: Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

4,351 citations