scispace - formally typeset
Search or ask a question
Author

Jinya Katsuyama

Bio: Jinya Katsuyama is an academic researcher from Japan Atomic Energy Agency. The author has contributed to research in topics: Fracture mechanics & Residual stress. The author has an hindex of 9, co-authored 104 publications receiving 391 citations. Previous affiliations of Jinya Katsuyama include Japan Atomic Energy Research Institute & Osaka University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of thermal aging of stainless steel weld-overlay claddings of nuclear reactor pressure vessels on the microstructure and hardness of the claddments were investigated using atom probe tomography and nanoindentation testing.
Abstract: The effects of thermal aging of stainless steel weld-overlay claddings of nuclear reactor pressure vessels on the microstructure and hardness of the claddings were investigated using atom probe tomography and nanoindentation testing. The claddings were aged at 400 °C for periods of 100–10,000 h. The fluctuation in Cr concentration in the δ-ferrite phase, which was caused by spinodal decomposition, progressed rapidly after aging for 100 h, and gradually for aging durations greater than 1000 h. On the other hand, NiSiMn clusters, initially formed after aging for less than 1000 h, had the highest number density after aging for 2000 h, and coarsened after aging for 10,000 h. The hardness of the δ-ferrite phase also increased rapidly for short period of aging, and saturated after aging for longer than 1000 h. This trend was similar to the observed Cr fluctuation concentration, but different from the trend seen in the formation of the NiSiMn clusters. These results strongly suggest that the primary factor responsible for the hardening of the δ-ferrite phase owing to thermal aging is Cr spinodal decomposition.

37 citations

Journal ArticleDOI
TL;DR: In this article, the residual stresses generated within the overlay-welded cladding and base material of reactor pressure vessel (RPV) steel were measured using the sectioning and deep-hole drilling (DHD) techniques.
Abstract: In this study, the residual stresses generated within the overlay-welded cladding and base material of reactor pressure vessel (RPV) steel were measured for as-welded and postwelded heat-treated conditions using the sectioning and deep-hole-drilling (DHD) techniques. In addition, thermo–elastic–plastic creep analyses considering the phase transformation in the heat-affected zone using the finite element method (FEM) were performed to evaluate the weld residual stress produced by overlay-welding and postweld heat treatment (PWHT). By comparing the analytical results with the experimentally determined values, we found a good agreement for the residual stress distribution within the cladding and the base material. The tensile residual stress in the cladding is largely due to the difference in the thermal expansion of the cladding and the base material. It was also shown that considering phase transformation during welding was important for improving the accuracy of the weld residual stress analysis. Using the calculated residual stress distribution, we performed fracture mechanics analyses for a vessel model with a postulated flaw during pressurized thermal shock (PTS) events. The effect of the weld residual stress on the structural integrity of RPVs was evaluated through some case studies. The results indicated that consideration of the weld residual stress produced by overlay-welding and PWHT is important for assessing the structural integrity of RPVs.

24 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructures and the hardness of stainless steel weld overlay cladding of reactor pressure vessels subjected to neutron irradiation at a dose of 7.2 × 1019 n cm−2 (E −> 1 −MeV) and a flux of 1.1 × 1013 ncm−2 s−1 at 290 −°C were investigated by atom probe tomography and by a nanoindentation technique.
Abstract: The microstructures and the hardness of stainless steel weld overlay cladding of reactor pressure vessels subjected to neutron irradiation at a dose of 7.2 × 1019 n cm−2 (E > 1 MeV) and a flux of 1.1 × 1013 n cm−2 s−1 at 290 °C were investigated by atom probe tomography and by a nanoindentation technique. To isolate the effects of the neutron irradiation, we compared the results of the measurements of the neutron-irradiated samples with those from a sample aged at 300 °C for a duration equivalent to that of the irradiation. The Cr concentration fluctuation was enhanced in the δ-ferrite phase of the irradiated sample. In addition, enhancement of the concentration fluctuation of Si, which was not observed in the aged sample, was observed. The hardening in the δ-ferrite phase occurred due to both irradiation and aging; however, the hardening of the irradiated sample was more than that expected from the Cr concentration fluctuation, which suggested that the Si concentration fluctuation and irradiation-induced defects were possible origins of the additional hardening.

23 citations

Journal ArticleDOI
TL;DR: In this paper, microstructural changes in the stainless steel weld overlay cladding of reactor pressure vessels subjected to neutron irradiation with a fluence of 7.2 × 10 23 ǫn −2 (E −> 1 −MeV) and a flux of 1.1 × 10 −2 s −1 at 290 −°C were investigated by atom probe tomography.
Abstract: Microstructural changes in the stainless steel weld overlay cladding of reactor pressure vessels subjected to neutron irradiation with a fluence of 7.2 × 10 23 n m −2 (E > 1 MeV) and a flux of 1.1 × 10 17 n m −2 s −1 at 290 °C were investigated by atom probe tomography. The results showed a difference in the microstructural changes that result from neutron irradiation and thermal aging. Neutron irradiation resulted in the slight progression of Cr spinodal decomposition and an increase in the fluctuation of the Si, Ni, and Mn concentrations in the ferrite phases, with formation of γ′-like clusters in the austenite phases. On the other hand, thermal aging resulted in the considerable progression of the Cr spinodal decomposition, formation of G-phases, and a decrease in the Si and an increase in the Ni and Mn concentration fluctuations at the matrix in the ferrite phases, without the microstructural changes in the austenite phases.

17 citations

Journal ArticleDOI
TL;DR: In this paper, a finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining, and a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stresses distributions.
Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson–Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

17 citations


Cited by
More filters
01 Jun 1985
TL;DR: In this paper, a technique for the measurement of the residual stress tensor averaged over a specified volume within a component is described, which involves measurement of small changes in lattice spacing using high resolution neutron diffraction.
Abstract: A technique is described for the measurement of the residual stress tensor averaged over a specified volume within a component. The method involves measurement of small changes in lattice spacing using high resolution neutron diffraction. The stress is inferred from these measurements of the strain, and the theory of the relationship between the two quantities is described, including the effects of crystalline anisotropy. The various types of high resolution neutron diffractometer suitable for the work are described. Experimental results validating the method are given for a simple bent bar of mild steel of known strain, a plastically strained mild steel bar, and a mild steel tube of known torsional strain. Examples of the method in practical use are given by a cracked fatigue test specimen, a double-V test weld and a weld joining a tube to a plate. A more detailed example is the anisotropic response of a polycrystalline sample under elastic and plastic strain; this is illustrated by measurements...

360 citations

Journal ArticleDOI
TL;DR: In this article, both the experiment and the finite element method (FEM) are utilized to investigate the welding residual stress distribution in medium thick-walled austenitic stainless steel pipe.
Abstract: During the course of the welding, high residual stress and distortion often occur. This causes the problem in nuclear power plant components especially where the danger of stress corrosion cracking (SCC) exists. In this study, both the experiment and the finite element method (FEM) are utilized to investigate the welding residual stress distribution in medium thick-walled austenitic stainless steel pipe. Firstly, the experiments are carried out to examine the characteristics of the temperature cycle and the welding residual stress in SUS304 stainless pipe, which is performed using a multi-pass welding process. Secondly, 2-D axi-symmetric FEM models are developed to simulate the welding temperature field and the residual stress field. In the finite element models, the temperature-dependent material properties, work hardening behavior, and annealing of historical plastic strain are taken into account. Finally, the influence of the yield strength of the weld metal on the welding residual stress is clarified by means of numerical simulation.

157 citations

01 Jan 1991
TL;DR: In this paper, a correlation between the microstructure and the local brittle zone (LBZ) phenomena in high-strength low-alloy (HSLA) steel welds was investigated by means of simulated heat-affected zone (HAZ) tests as well as welded joint tests.
Abstract: This study is concerned with a correlation between the microstructure and the local brittle zone (LBZ) phenomena in high-strength low-alloy (HSLA) steel welds. The influence of the LBZ on toughness was investigated by means of simulated heat-affected zone (HAZ) tests as well as welded joint tests. Micromechanical processes involved in microvoid and cleavage microcrack formation were also identified using notched round tensile tests and subsequent scanning electron microscopy (SEM) analyses. The LBZ in the HAZ of a mUltipass welded joint is the intercritically reheated coarse-grained HAZ whose properties are strongly influenced by metallurgical factors such as an effective grain size and high-carbon martensitic islands: The experimental results indicated that Charpy energy was found to decrease monotonically with increasing the amount of martensitic islands, confirming that the martensitic island is the major microstructural factor controlling the HAZ toughness. In addition, microvoids and microcracks were found to initiate at the interface between the martensitic island and the ferrite matrix, thereby causing the reduction in toughness. These findings suggest that the LBZ phenomena in the coarse-grained HAZ can be explained by the morphology and the amount of martensitic islands.

149 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed current phenomenological knowledge and understanding of mechanisms for radiation embrittlement of reactor pressure vessel low alloy steels and irradiation assisted stress corrosion cracking of core internals of stainless steels.
Abstract: Current phenomenological knowledge and understanding of mechanisms are reviewed for radiation embrittlement of reactor pressure vessel low alloy steels and irradiation assisted stress corrosion cracking of core internals of stainless steels. Accumulated test data of irradiated materials in light water reactors and microscopic analyses by using state-of-the-art techniques such as a three-dimensional atom probe and electron backscatter diffraction have significantly increased knowledge about microstructural features. Characteristics of solute clusters and deformation microstructures and their contributions to macroscopic material property changes have been clarified to a large extent, which provide keys to understand in the degradation mechanisms. However, there are still fundamental research issues that merit study for long-term operation of reactors that requires reliable quantitative prediction of radiation-induced degradation of component materials in low-dose rate high-dose conditions.

134 citations